Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thuận Thành Bắc Ninh

Nội dung Đề HSG huyện lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thuận Thành Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2021 - 2022 Đề thi HSG huyện lớp 7 môn Toán năm 2021 - 2022 Xin chào quý thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán lớp 7 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh. Kỳ thi sẽ diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Đề thi năm nay bao gồm các câu hỏi sau: Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và hình thứ hai tỉ lệ với 4 và 5, diện tích hình thứ hai và hình thứ ba tỉ lệ với 7 và 8. Tính diện tích của mỗi hình chữ nhật đó. Trong tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Hãy chứng minh AC = EB và AC // BE. Từ E kẻ EH vuông góc BC (H thuộc BC). Biết góc HBE bằng 50° và góc MEB bằng 25°, tính các góc HEM và BME. Từ điểm O tùy ý trong tam giác ABC, kẻ OQ, ON, OP lần lượt vuông góc với các cạnh BC, CA, AB. Hãy tính tỉ số: (AN^2 + BP^2 + CQ^2)/(AP^2 + BQ^2 + CN^2). Đề bài cũng yêu cầu tìm các số nguyên dương a, b, c thỏa mãn một điều kiện nào đó. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh lớp 7 có một kỳ thi suôn sẻ và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương : + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 – 2n+2 + 3n – 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3.
Đề học sinh giỏi Toán 7 năm 2015 - 2016 phòng GDĐT Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5,6,7 nhưng sau đó chia theo tỉ lệ 4,5,6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi P, Q là trung điểm của AD, BC và I là giao điểm các đường vuông góc với AD và BC tại P và Q. a) Chứng minh ∆AIB = ∆DIC. b) Chứng minh AI là tia phân giác của góc BAC. c) Kẻ IE vuông góc với AB, chứng minh AD AE. + Cho a, b, c là ba số thực khác 0, thoả mãn. Hãy tính giá trị của biểu thức.
Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình : + Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. a) Chứng minh DC = BE và DC BE. b) Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A, M, H thẳng hàng. + Cho tam giác ABC vuông tại A có AB= 3cm; AC= 4cm. Điểm I nằm trong tam giác và cách đều ba cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ điểm I đến BC. Tính MB. + Tìm hình chữ nhật có kích thước các cạnh là số nguyên sao cho số đo diện tích bằng số đo chu vi.
Đề khảo sát HSG Toán 7 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho tam giác ABC đều. Trên cạnh AB lấy điểm D sao cho BD AB. Tại D kẻ đường vuông góc với AB cắt cạnh BC tại E. Tại E kẻ đường vuông góc với BC cắt AC tại F. 1) Chứng minh DF AC. Biết trong tam giác vuông cạnh đối diện với góc 0 30 thì bằng nửa cạnh huyền. 2) Chứng minh tam giác DEF đều. 3) Gọi G là trọng tâm của tam giác DEF. Chứng minh GA = GB = GC. + Cho đa thức Q(x) = ax bx cx d với a, b, c, d. Biết Q(x) chia hết cho 3 với mọi. Chứng tỏ các hệ số a, b, c, d đều chia hết cho 3. + Số M được chia thành ba phần tỉ lệ nghịch với 3; 5; 6. Biết rằng tổng các lập phương của ba phần đó là 10728. Hãy tìm số M.