Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 7 năm 2022 – 2023 Đề học sinh giỏi môn Toán lớp 7 năm 2022 – 2023 Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi sẽ được tổ chức vào ngày 22 tháng 02 năm 2023, với thời gian làm bài 120 phút, đề thi hình thức 100% tự luận. Trong đề thi sẽ có nhiều dạng bài tập khác nhau, đi từ dễ đến khó, để đánh giá năng lực và kiến thức của các em học sinh. Một trong số đó là bài toán về tam giác ABC và các điểm I, D, E, H, với nhiều yếu tố cần chứng minh và suy luận logic. Bài toán còn yêu cầu thí sinh chọn một trong hai câu hỏi phụ, với bài toán cộng trừ. Đề thi được thiết kế để thách thức tư duy và kỹ năng giải quyết vấn đề của các học sinh, giúp họ rèn luyện khả năng tự ôn tập và phát triển bản thân. Hy vọng rằng đề thi sẽ mang lại cơ hội cho các em thể hiện tài năng và đạt kết quả cao trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Có hai chiếc hộp giống nhau. Trong mỗi hộp chứa 4 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4 (hai thẻ khác nhau thì ghi hai số khác nhau). Rút ngẫu nhiên một thẻ ở trong mỗi hộp. Tính xác suất để rút được hai thẻ ghi số giống nhau trong cùng một lần rút? + Cho tam giác ABC vuông tại A có AB = AC, có D là trung điểm BC. Trên đoạn BD lấy E (khác B, D), trên tia đối của tia CB lấy điểm F sao cho BE = CF. Kẻ các đường thẳng vuông góc với BC tại E cắt AB tại G, đường vuông góc với BC tại F cắt AC tại H. Gọi giao điểm của GH với BC là I a) Chứng minh BG = CH, IG = IH. b) Kẻ đường thẳng vuông góc với CA tại C, cắt AD tại M. Chứng minh MI vuông góc với GH. c) Đường thẳng vuông góc với DG tại D cắt AC tại K, chứng minh rằng AK + AG ≤ DG + DK. + Tìm số tự nhiên m, n sao cho 2 3 4 n m là số chính phương.
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biểu đồ đoạn thẳng dưới đây biểu diễn số lượt khách đã đến ăn Phở Bò tại một nhà hàng vào một số thời điểm trong ngày. Tỉ số phần trăm số lượt khách vào ăn Phở tại thời điểm 11 giờ so với tổng số lượt khách vào ăn Phở tại thời điểm 9 giờ đến thời điểm 17 giờ là (Làm tròn kết quả đến chữ số thập phân thứ hai). + Một hộp có chứa bốn cái thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; 3; 4. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên hai thẻ trong hộp. Tính xác xuất của biến cố “Tích các số trên hai thẻ rút ra là số chẵn”. + Diện tích ba mặt của một hình hộp chữ nhật là 30 cm2, 40 cm2 và 75 cm2. Hỏi thể tích của hình hộp đó bằng bao nhiêu cm3?
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho a b là các số nguyên dương, chứng minh rằng biểu thức 2 2 ab a b 2 2 luôn chia hết cho 9. Tìm cặp số tự nhiên x y trong đó y là chữ số, biết rằng: 1 2 … 1 x y x. + Cho tam giác ABC cân tại A (AB BC). Gọi F là trung điểm của AC, qua F kẻ đường thẳng vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN BM. a) Chứng minh: AMC BAC. b) Chứng minh: AM CN. c) Lấy điểm D trên cạnh AC, điểm E trên cạnh AB sao cho AD AE. Trên tia BM lấy I sao cho BI DE. Chứng minh: EI // DB và 2 BC DE BD. + Cho các số nguyên dương abc thỏa mãn abc 2023. Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên: 2023 2023 2023 abc A cab.
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho ABC vuông tại A, M là trung điểm của BC, trên tia đối của tia MA, lấy điểm D sao cho AM = MD 1) Chứng minh: AB // CD và AM 1 2 BC. 2) Gọi I và K lần lượt là chân đường vuông góc hạ từ B và C xuống AD, N là chân đường vuông góc hạ từ M xuống AC. a) Chứng minh: IM = MK b) Chứng minh: KN < MC b) ABC thỏa mãn điều kiện gì để AI = IM = MK = KD? + Cho biết 20 công nhân làm xong một đoạn đường hết 60 ngày. Hỏi 15 công nhân làm đoạn đường đó thì hết bao nhiêu ngày? (Giả sử năng suất làm việc của mỗi công nhân là như nhau). + Cho ΔABC có cạnh AB = 1cm và cạnh BC = 4cm. Tính độ dài cạnh AC biết độ dài cạnh AC là một số nguyên. Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là 1 2 thì đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là?