Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2022 2023 trường THPT chuyên Bến Tre

Nội dung Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2022 2023 trường THPT chuyên Bến Tre Bản PDF - Nội dung bài viết Đề thi chọn đội tuyển HSG Toán lớp 10 năm 2022 - 2023 trường THPT chuyên Bến Tre Đề thi chọn đội tuyển HSG Toán lớp 10 năm 2022 - 2023 trường THPT chuyên Bến Tre Xin chào quý thầy cô và các em học sinh lớp 10! Trong kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2022 - 2023 của trường THPT chuyên Bến Tre, chúng ta sẽ gặp phải những bài toán thú vị và thách thức. Hãy cùng nhau khám phá những câu hỏi hấp dẫn dưới đây: Có bao nhiêu cách sắp xếp 6 nữ và 16 nam để nhảy múa theo vòng tròn sao cho có ít nhất 2 người nam đứng giữa 2 người nữ bất kỳ? Tìm tất cả các hàm số $f: \mathbb{R} \to \mathbb{R}$ thỏa mãn $f(xy + f(x)) = xf(y)$ với mọi $x,y \in \mathbb{R}$. Chứng minh rằng nếu $p$ và $q$ là hai số nguyên tố phân biệt, thì $p^{q - 1} + q^{p - 1}$ chia hết cho $p \cdot q$. Cho $p$ là số nguyên tố khác 2 và $a, b$ là hai số tự nhiên lẻ sao cho $a + b$ chia hết cho $p$ và $a - b$ chia hết cho $p - 1$. Chứng minh rằng $a^b + b^a$ chia hết cho $2p$. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. Gọi $D, E, F$ lần lượt là các giao điểm của các tia $AM, BM, CM$ với các cạnh $BC, CA, AB$. Gọi $K$ là giao điểm của $DE$ và $CM$, $H$ là giao điểm của $DF$ và $BM$. Chứng minh rằng các đường thẳng $AD, BK, CH$ đồng quy. Hãy cùng nhau tham gia và thử thách phản xạ, sự sáng tạo và kiến thức Toán của mình trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.