Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chương Mỹ Hà Nội

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chương Mỹ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2022-2023 phòng GD&ĐT Chương Mỹ - Hà Nội Đề học sinh giỏi Toán lớp 8 năm 2022-2023 phòng GD&ĐT Chương Mỹ - Hà Nội Sytu xin chào đến quý thầy cô và các em học sinh lớp 8 với đề kiểm tra chất lượng học sinh giỏi môn Toán cho năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Dưới đây là một số câu hỏi từ đề thi: 1. Giải phương trình: \( (4x - 5)^2(2x - 3)(x - 1) = 9 \). Tìm các cặp số nguyên (x;y) thỏa mãn: \( 3 \times 2 + 5y^2 = 345 \). Tìm hệ số a, b để đa thức \( x^5 - 6x^2 + ax + b \) chia hết cho đa thức \( x^2 - 3x + 2 \). 2. Cho hình chữ nhật ABCD, gọi H là hình chiếu của D trên AC. Gọi M, N, K lần lượt là trung điểm của BC, AH, DH. 1) Tứ giác MNKC là hình gì? Vì sao? 2) Chứng minh rằng: \( DH^2 = HA \cdot HC \). 3) Chứng minh rằng: AND đồng dạng với DKC. 4) Chứng minh rằng: DN vuông góc NM. 3. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Tam Đảo Vĩnh Phúc
Nội dung Đề thi HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Tam Đảo Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Tam Đảo- Vĩnh Phúc Đề thi HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Tam Đảo- Vĩnh Phúc Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG Toán lớp 8 năm 2014-2015 từ phòng GD&ĐT Tam Đảo- Vĩnh Phúc. Đề thi bao gồm lời giải chi tiết và hướng dẫn chấm điểm các bài toán. Đề thi bắt đầu với câu hỏi về hình vuông ABCD, trong đó AC cắt BD tại O. Đề bài yêu cầu chứng minh một số tính chất của tam giác OEM khi M là điểm trên cạnh BC và AM cắt đường thẳng CD tại N. Tiếp theo là bài toán về biểu thức đại số và tổ hợp số học, một bài toán khác yêu cầu chứng minh rằng trong ba số x, y, z, tồn tại hai số đối nhau khi thỏa mãn điều kiện nhất định. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức Toán lớp 8 một cách linh hoạt và chính xác để giải quyết các bài toán đa dạng. Hy vọng đề thi sẽ là cơ hội tốt để các em rèn luyện và củng cố kiến thức của mình. Chúc quý thầy cô và các em học sinh thành công!
Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG cấp huyện môn Toán năm 2012 - 2013 từ phòng GD&ĐT Việt Yên, Bắc Giang. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi từ đề thi: 1. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD^2 = 1/AM^2 + 1/AN^2. 4. Tìm đa thức f(x) biết rằng: f(x) chia cho x - 2 dư 10, f(x) chia cho x - 2 dư 24, f(x) chia cho x^2 - 4 được thương là -5x và còn dư. 5. Phân tích đa thức x^4 + 2013x^2 + 2012x + 2013 thành nhân tử.