Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 2 năm 2022 - 2023 trường THPT Lý Thái Tổ - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát chất lượng môn Toán 10 lần 2 năm học 2022 – 2023 trường THPT Lý Thái Tổ, tỉnh Bắc Ninh; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 10 lần 2 năm 2022 – 2023 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong cuộc thi cắm hoa của Đoàn trường THPT Lý Thái Tổ nhân dịp 92 năm ngày thành lập Đoàn TNCS Hồ Chí Minh 26 / 3 / 2023. Ban giám khảo đã chọn ra được 12 học sinh đạt giải trong đó có 7 học sinh nam và 5 học sinh nữ. Đoàn trường muốn chọn ra 5 học sinh trong 12 học sinh trên để đi thi giao lưu cùng với các trường trong thành phố Từ Sơn. Tính xác xuất để sao cho trong 5 học sinh này có cả học sinh nam và học sinh nữ mà số lượng học sinh nữ nhiều hơn số lượng học sinh nam? + Trong một hộp có 30 chiếc thẻ cùng loại được viết các số 1, 2, 3, …, 30 sao cho mỗi thẻ chỉ viết một số và hai thẻ khác nhau viết hai số khác nhau. Chọn ngẫu nhiên 2 thẻ trong hộp. Xác suất để 2 thẻ được chọn có tích của hai số được viết trên đó là số chia hết cho 3. + Số đôi giày bán ra trong tháng 12 năm 2022 của một cửa hàng được thống kê trong bảng tần số sau: Cỡ giày 36 37 38 39 40 41 42 43 44. Tần số ( Số đôi giày bán được) 20 28 25 50 35 35 21 45 32. Mốt của mẫu số liệu trên là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 10 lần 2 năm 2020 - 2021 trường THPT Quang Hà - Vĩnh Phúc
Đề kiểm tra chuyên đề môn Toán lớp 10 lần 2 năm học 2020 – 2021 trường THPT Quang Hà – Vĩnh Phúc được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 07 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán 10 lần 2 năm 2020 – 2021 trường THPT Quang Hà – Vĩnh Phúc : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5ha. Để chăm bón các loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Xác định dạng của tam giác ABC biết các góc A, B, C của tam giác đó thỏa mãn hệ thức.
Đề kiểm định Toán 10 lần 2 năm 2020 - 2021 trường THPT Yên Phong 2 - Bắc Ninh
Thứ Bảy ngày 24 tháng 04 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 10 năm học 2020 – 2021 lần thứ hai. Đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh được biên soạn theo hình thức đề 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng Oxy, cho ba điểm. a) Viết phương trình tổng quát của đường thẳng ∆ đi qua trung điểm I của AB và vuông góc với BC. b) Tìm giao điểm của đường thẳng ∆ với các trục tọa độ. c) Tìm điểm M thuộc ∆ và cách đều hai điểm A C. + Cho các số thực a b c sao cho tồn tại tam giác có độ dài ba cạnh là a b c và chu vi bằng 2 (cùng đơn vị đo). Chứng minh rằng. + Hình vẽ sau đây là đồ thị của hàm số nào trong bốn hàm số cho ở các đáp án A, B, C, D?
Đề kiểm tra Toán 10 lần 2 năm 2020 - 2021 trường Hàn Thuyên - Bắc Ninh
Đề kiểm tra Toán 10 lần 2 năm học 2020 – 2021 trường THPT Hàn Thuyên, tỉnh Bắc Ninh gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra Toán 10 lần 2 năm 2020 – 2021 trường Hàn Thuyên – Bắc Ninh : + Cổng vào thành phố X có hình dạng xem như một Parabol (hình vẽ). Trên thành cổng, tại vị trí cao 45m so với mặt đất (tại điểm M thuộc cung AB), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất), vị trí chạm mặt đất của đầu sợi dây cách chân cổng đoạn 10m. Xác định chiều cao của cổng tính từ mặt đất đến điểm cao nhất của cổng. + Trong hệ trục tọa độ Oxy, cho u(3;2), v(0;1). Tập hợp điểm M thoả mãn khi m thay đổi là: A. Đường thẳng có phương trình (d): x 3y 3 0. B. đường thẳng có phương trình (d): 3x y 1 0. C. đường thẳng có phương trình (d): 2x 3y 0. D. đường thẳng có phương trình (d): y 0. + Trong hệ trục tọa độ Oxy, cho đường thẳng (d) có phương trình: x y 1 2 3. Khi đó, số mệnh đề đúng trong các mệnh đề dưới đây là: 1) (d) có một véc tơ pháp tuyến là n(2;3). 2) (d) cắt trục Ox tại điểm A(2;0). 3) (d) cắt trục Oy tại điểm B(0;3). 4) (d) có một véc tơ pháp tuyến là (6;4).
Đề khảo sát Toán 10 lần 1 năm 2020 - 2021 trường Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề được biên soạn theo hình thức đề 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2020 – 2021 trường Tiên Du 1 – Bắc Ninh : + Với H, K là các mệnh đề và có một định lý được phát biểu dưới dạng “Nếu H thì K”. Khẳng định nào sau đây là đúng? A. H là điều kiện cần để có K. B. K không là điều kiện cần để có H. C. K là điều kiện đủ để có H. D. H là điều kiện đủ để có K. + Cho hình vuông ABCD có cạnh bằng a. Gọi điểm M là trung điểm của cạnh AB. Gọi điểm N thỏa mãn AN = 3/4.AC. Chứng minh rằng: MN.ND = 0. + Cho phương trình 3√(x2 – 2x + 3) = x2 – 2x + m với tham số m thuộc R. Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn [0;3].