Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề nâng cao và phát triển Hình học 9 - Nguyễn Hoàng Việt

Tài liệu gồm 312 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình), tuyển tập các chuyên đề nâng cao và phát triển Hình học 9. MỤC LỤC : Chương 1 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 1. Bài 1. HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO 1. A Kiến thức cần nhớ 1. B Các ví dụ 1. C Luyện tập 5. Bài 2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 15. A Kiến thức cần nhớ 15. B Các ví dụ 16. C Luyện tập 17. Bài 3. HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG 21. A Kiến thức cần nhớ 21. B Các dạng toán 21. + Dạng 1. Giải tam giác vuông 21. + Dạng 2. Tính cạnh và góc của tam giác 22. + Dạng 3. Toán thực tế 23. C Luyện tập 24. Bài 4. ÔN TẬP CHƯƠNG 1 29. A Kiến thức cần nhớ 29. B Bài tập trắc nghiệm 29. C Bài tập tự luận 46. Bài 5. ĐỀ KIỂM TRA 1 TIẾT. 61. A Đề số 1A (Tự luận dành cho học sinh đại trà) 61. B Đề số 1B (Tự luận dành cho học sinh đại trà) 63. C Đề số 2A (Trắc nghiệm kết hợp tự luận dành cho học sinh đại trà) 66. D Đề số 2B (Trắc nghiệm kết hợp tự luận dành cho học sinh đại trà) 66. E Đề số 3A (Tự luận dành cho học sinh giỏi) 70. F Đề số 3B (Tự luận dành cho học sinh giỏi) 72. Chương 2 . ĐƯỜNG TRÒN 76. Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn 76. A Tóm tắt lí thuyết 76. B Các ví dụ 77. C Luyện tập 80. Bài 2. Đường kính và dây của đường tròn 88. A Tóm tắt lí thuyết 88. B Các ví dụ 88. C Luyện tập 92. Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 96. A Tóm tắt lí thuyết 96. B Các ví dụ 96. C Luyện tập 99. Bài 4. Vị trí tương đối của đường thẳng và đường tròn 104. A Tóm tắt lí thuyết 104. B Các ví dụ 105. C Luyện tập 107. Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn 110. A Tóm tắt lí thuyết 110. B Các ví dụ 110. C Luyện tập 113. Bài 6. Tính chất của hai tiếp tuyến cắt nhau 117. A Tóm tắt lí thuyết 117. B Các ví dụ 118. C Luyện tập 123. Bài 7. Vị trí tương đối của hai đường tròn 127. A Tóm tắt lí thuyết 127. B Các ví dụ 128. C Luyện tập 133. Bài 8. Ôn tập chương II 140. A Các ví dụ 140. B Luyện tập 148. Chương 3 . GÓC VỚI ĐƯỜNG TRÒN 160. Bài 1. Góc ở tâm. Số đo cung 160. A Tóm tắt lí thuyết 160. B Các ví dụ 161. C Luyện tập 162. Bài 2. Liên hệ giữa cung và dây 165. A Tóm tắt lí thuyết 165. B Các ví dụ 165. C Luyện tập 167. Bài 3. Góc nội tiếp 170. A Tóm tắt lí thuyết 170. B Các ví dụ 170. C Luyện tập 174. Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung 178. A Tóm tắt lí thuyết 178. B Các ví dụ 178. C Luyện tập 181. D Thử thách 188. Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường. tròn 191. A Tóm tắt lí thuyết 191. B Các ví dụ 191. C Luyện tập 195. Bài 6. Cung chứa góc 200. A Tóm tắt lí thuyết 200. B Các ví dụ 201. C Luyện tập 204. Bài 7. Tứ giác nội tiếp 209. A Tóm tắt lí thuyết 209. B Các ví dụ 210. C Luyện tập 215. Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp 222. A Tóm tắt lí thuyết 222. B Các ví dụ 222. C Luyện tập 224. Bài 9. Độ dài đường tròn, cung tròn 229. A Tóm tắt lý thuyết 229. B Các ví dụ 229. C Luyện tập 232. Bài 10. Diện tích hình tròn, hình quạt tròn 236. A Tóm tắt lí thuyết 236. B Các ví dụ 237. C Luyện tập 239. Bài 11. Ôn tập chương III 244. Chương 4 . HÌNH TRỤ – HÌNH NÓN – HÌNH CẦU 269. Bài 1. Hình trụ. Diện tích xung quanh và thể tích hình trụ 269. A Tóm tắt lí thuyết 269. B Các ví dụ 269. C Luyện tập 272. Bài 2. Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình. nón, hình nón cụt 277. A Tóm tắt lí thuyết 277. B Các ví dụ 279. C Luyện tập 281. Bài 3. Hình cầu – Diện tích mặt cầu và thể tích hình cầu 285. A Tóm tắt lí thuyết 285. B Các ví dụ 285. C Luyện tập 287. Bài 4. Ôn tập chương IV 291. A Các ví dụ 291. B Luyện tập 295.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bồi dưỡng học sinh giỏi Toán THCS - chủ đề Số học
Cuốn sách Chuyên đề bồi dưỡng học sinh giỏi Toán THCS – chủ đề Số học của tác giả Nguyễn Vũ Thanh gồm 184 trang, sách hướng dẫn giải các bài toán hay và khó về chủ đề số học, thường xuất hiện trong các đề thi HSG Toán 6 – 7 – 8 – 9. Nội dung sách gồm : Chương 1 . Số tự nhiên Bài 1. Khái niệm về tập hợp và tập hợp con Bài 2. Hệ ghi số Bài 3. Các phép tính trong tập số tự nhiên N Bài 4. Lũy thừa Chương 2 . Phép chia hết trong tập số nguyên Z Bài 1. Một số phương pháp chứng minh chia hết Bài 2. Các dấu hiệu chia hết Bài 3. Các bài toán liên quan đến tính chia hết Bài 4. Phép chia có dư Chương 3 . Số nguyên tố Bài 1. Ước chung lớn nhất và bội chung nhỏ nhất Bài 2. Số nguyên tố và hợp số [ads] Chương 4 . Phương trình nghiệm nguyên Bài 1. Nghiệm nguyên của phương trình bậc nhất hai ẩn ax + by = c Bài 2. Phương trình bậc nhất nhiều ẩn a1x1 + a2x2 + … + anxn = c Bài 3. Một số phương pháp giải phương trình nghiệm nguyên Chương 5 . Phần nguyên Bài 1. Định nghĩa và tính chất của phần nguyên Bài 2. Một số phương pháp giải toán phần nguyên Bài 3. Áp dụng phần nguyên để giải toán số học Bài 4. Giải phương trình có chứa phần nguyên Chương 6 . Đại số tổ hợp Bài 1. Quy tắc nhân – Quy tắc cộng – Tổ hợp lặp Bài 2. Hoán vị Bài 3. Chỉnh hợp Bài 4. Tổ hợp Bài 5. Nhị thức Niu-tơn
238 bài toán biến đổi căn thức nâng cao - Lương Tuấn Đức
Được đề cập lần đầu tiền trong chương trình Đại số 7, mặc dù rất đơn giản với căn bậc hai số học, căn thức đã bước đầu gây ra sự tò mò, khám phá đối với nhiều bạn học sinh nhỏ tuổi yêu Toán. Lên lớp 9 bậc THCS, căn thức đã trở thành một nội dung chính thống, phổ biến và giữ vị trí quan trọng trong chương trình Đại số 9, với đầy đủ các khái niệm, tính chất, định nghĩa căn bậc hai với một biến số, nhiều biến số, hằng đẳng thức √A^2 = |A|, các phép toán khai phương một tích, khai phương một thương, liên hệ giữa phép nhân, phép chia và phép khai phương, phép trục căn thức, cao hơn nữa là biến đổi đơn giản biểu thức chứa căn bậc hai, tính toán với căn bậc ba và căn bậc cao. Xin lưu ý nội dung phương trình, hệ phương trình chứa căn là nội dung khó, đặc sắc, tác giả cố gắng sắp xếp nó trong nhiều tài liệu bộ phận khác. Những bài toán biến đổi đơn giản biểu thức chứa căn bậc hai, có thể nói đây là kiến thức hết sức cơ bản, nền tảng, xuất hiện gần như là bắt buộc trong các kỳ thi kiểm tra kiến thức thường niên, kỳ thi chọn học sinh giỏi toán các cấp trên toàn quốc, kỳ thi tuyển sinh lớp 10 hệ THPT, lý do đó khiến nó vẫn là một câu hỏi rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. [ads] Biến đổi đơn giản biểu thức chứa căn bậc hai thì có lẽ đa số bạn đọc đều biết và từng trải qua, thậm chí là xuất hiện tâm lý “chán chường, coi thường” với khẩu hiệu “Cho biểu thức … Tìm điều kiện xác định … Rút gọn biểu thức … Tính giá trị của biểu thức khi … Tìm x để …. Trước tiên là rút gọn, còn yêu cầu phía sau của dạng toán khá đa dạng, đa chiều, mục tiêu tìm các ẩn thỏa mãn một tính chất nào đó nên để thao tác dạng toán này, các bạn học sinh cần liên kết, phối hợp, tổng hợp các kiến thức được học về căn thức, phương trình, hệ phương trình và bất phương trình, bất đẳng thức, đôi khi nó đòi hỏi năng lực tư duy của thí sinh rất cao, nhiều bạn học sinh trung học cơ sở có thể làm 80%, nhưng để làm trọn vẹn thì cũng không thể nói chắc chắn như đinh đóng cột được. Tài liệu này mang tên BÀI TẬP BIẾN ĐỔI TỔNG HỢP CĂN THỨC (PHẦN 2), chủ yếu xoay quanh các bài toán rút gọn căn thức, kèm theo nhiều câu hỏi phụ. Một khi đã rút gọn thu được căn thức nhỏ, dựa trên đặc điểm đặc trưng căn thức đó, kết hợp kiến thức nhiều mảng trong đại số, số học, hình học, chúng ta có thể tự mình tạo ra rất nhiều câu hỏi phụ hay, khó, thậm chí là rất khó, tầm vóc tuy nhỏ (câu hỏi phụ) nhưng mức độ có thể vượt qua những bài toán khó riêng biệt. Trước tiên tác giả xin được giới thiệu, mở rộng và phát triển lớp bài toán cũ, tức là các đề bài nguyên nằm trong đề thi chất lượng học kỳ I, đề thi chất lượng học kỳ II, đề thi tuyển sinh lớp 10 THPT, tuyển sinh lớp 10 THPT Chuyên và đề thi học sinh giỏi các cấp bậc THCS trong phạm vi có thể sưu tập.