Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết

Trong quá trình học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và luyện tập với các đề thi thử THPT Quốc gia môn Toán, chúng ta thường bắt gặp các bài toán vận dụng tính tỉ số thể tích giữa hai khối đa diện. Để giải quyết được dạng toán này, ngoài việc nắm vững công thức tính thể tích các khối đa diện thường gặp, còn phải biết vận dụng các định lí về tỉ số thể tích … trong trường hợp việc tính thể tích khối đa diện là phức tạp hoặc không có đủ giả thiết để tính toán. giới thiệu đến bạn đọc đề bài và lời giải chi tiết 130 bài tập tỉ số thể tích khối đa diện có lời giải chi tiết, với nhiều biến dạng khác nhau, đồ phức tạp khác nhau. Trích dẫn một số bài toán trong tài liệu bài tập tỉ số thể tích khối đa diện có lời giải chi tiết: + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 độ. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần đó. + Trong không gian Oxyz, cho các điểm A, B, C lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 45 độ. Gọi V1, V2 lần lượt là thể tích khối chóp S.AHK và S.ACD với H, K lần lượt là trung điểm của SC và SD. Tính độ dài đường cao của khối chóp S.ABCD và tỉ số k = V1/V2. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A′, B′, C′ và D′ sao cho SA’/SA = SC’/SC = 1/3 và SB’/SB = SD’/SD = 3/4. Tính thể tích V của khối đa diện lồi S.A’B’C’D’.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm hàm số lũy thừa, mũ và logarit - Lê Văn Đoàn
Tài liệu Bài tập trắc nghiệm hàm số lũy thừa, mũ và logarit do thầy Lê Văn Đoàn biên soạn gồm 15 trang.
Bài tập trắc nghiệm ứng dụng tích phân để tính diện tích hình phẳng
Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tuyển chọn các bài tập trắc nghiệm chủ đề ứng dụng tích phân để tính diện tích hình phẳng, có đáp án và lời giải chi tiết; giúp học sinh lớp 12 rèn luyện khi học chương trình môn Toán 12 phần Giải tích chương 3: Nguyên Hàm, Tích Phân Và Ứng Dụng.
Bài tập chọn lọc nguyên hàm, tích phân và ứng dụng - Lê Minh Tâm
Tài liệu gồm 609 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển tập các bài tập chọn lọc chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 rèn luyện khi học chương trình môn Toán 12 phần Giải tích chương 3. MỤC LỤC : PHẦN ĐỀ BÀI. Chủ đề 01. NGUYÊN HÀM (Trang 2). Chủ đề 02. TÍCH PHÂN (Trang 44). Chủ đề 03. ỨNG DỤNG TÍCH PHÂN (Trang 90). PHẦN ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI. Chủ đề 01. NGUYÊN HÀM (Trang 2). Chủ đề 02. TÍCH PHÂN (Trang 121). Chủ đề 03. ỨNG DỤNG TÍCH PHÂN (Trang 278).
Bài tập trắc nghiệm tích phân và ứng dụng của tích phân vận dụng cao
Tài liệu gồm 125 trang, tuyển chọn các bài tập trắc nghiệm tích phân và ứng dụng của tích phân vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên Hàm, Tích Phân Và Ứng Dụng. CHỦ ĐỀ 1 . TÍCH PHÂN VẬN DỤNG CAO. + Phần 1. Tính tích phân theo định nghĩa 02. + Phần 2. Kỹ thuật đổi biến 03. + Phần 3. Kỹ thuật tích phân từng phần 07. + Phần 4. Tính a, b, c trong tích phân 09. + Phần 5. Tính tích phân hàm phân nhánh 12. + Phần 6. Tính tích phân dựa vào tính chất 14. + Phần 7. Kỹ thuật phương trình hàm 15. + Phần 8. Kỹ thuật biến đổi 18. + Phần 9. Kỹ thuật đưa về đạo hàm đúng 24. + Phần 10. Kỹ thuật đưa về bình phương loại 125. + Phần 11. Kỹ thuật đưa về bình phương loại 2 – Kỹ thuật Holder 27. + Phần 12. Kỹ thuật đánh giá AM – GM 38. + Phần 13. Tìm GTLN – GTNN của tích phân 42. CHỦ ĐỀ 2 . ỨNG DỤNG TÍCH PHÂN VẬN DỤNG CAO. + Phần 1. Áp dụng công thức. + Phần 2. Đồ thị hàm f(x). + Phần 3. Đồ thị hàm f'(x). + Phần 4. Diện tích hình phẳng. + Phần 5. Thể tích khối tròn xoay. + Phần 6. Bài toán vận tốc.