Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 1 năm 2019 - 2020 trường Thuận Thành 1 - Bắc Ninh

Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 716 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 716, 717, 718, 719, 720 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Phủ định mệnh đề “có một học sinh của lớp 10A không thích học môn toán” là? A. Tất cả các bạn lớp 10A đều thích học môn toán. B. Không có bạn nào lớp 10A thích học môn toán. C. Có ít nhất một bạn lớp 10A không thích học môn toán. D. Có nhiều nhất một bạn lớp 10A không thích học môn toán. + Để giữ gìn phong tục tết Việt Nam, gia đình bác Long Thắm có tờ 100.000 đồng muốn đổi thành các tờ 5000 đồng và 10.000 đồng để mừng tuổi cho các cháu? Hỏi hai bác có bao nhiêu cách đổi? [ads] + Lớp học 10A của trường THPT Thuận Thành số 1, tỉnh Bắc Ninh có 30 học sinh. Qua khảo lựa chọn về sở thích các môn thể dục thể thao như đá cầu, bóng đá, bóng chuyền … được biết có 13 bạn thích đá cầu, 14 bạn thích bóng chuyền và 15 bạn thích bóng đá. Có 9 bạn thích cả bóng đá và đá cầu, có 8 bạn thích cả đá cầu và bóng chuyền và 5 bạn chỉ thích bóng đá nhưng không thích bóng chuyền. Hỏi lớp 10A có bao nhiêu bạn không thích cả ba môn thể thao nói trên biết rằng có 6 bạn thích cả ba môn thể thao đó? + Cho hình vuông ABCD có cạnh bằng 2. Gọi M, N lần lượt là trung điểm đoạn thẳng AB, CD. Gọi H thuộc đoạn MN sao cho HM = 3HN. Lấy điểm I thuộc đường thẳng CD sao cho BI vuông góc với AH. Khi đó S_CAI thuộc khoảng nào sau đây? + Cho hai điểm A(-3,2), B(4,3). Điểm C thuộc trục Ox và có hoành độ dương để tam giác CAB vuông tại C. Khi đó tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL học kỳ 2 Toán 10 năm học 2018 - 2019 sở GDĐT Vĩnh Phúc
Sáng thứ Sáu ngày 10 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2018 – 2019. Đề KSCL học kỳ 2 Toán 10 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc có mã đề 359, đề gồm 2 trang được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận theo tỉ lệ điểm 3:7, phần trắc nghiệm gồm có 12 câu, phần tự luận gồm có 6 câu, học sinh làm bài thi HK2 Toán 10 trong khoảng thời gian 90 phút. [ads] Trích dẫn đề KSCL học kỳ 2 Toán 10 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc : + Gọi d là đường thẳng đi qua điểm M(1;3) và cắt các tia Ox, Oy tương ứng tại hai điểm A và B phân biệt. Diện tích tam giác OAB đạt giá trị nhỏ nhất bằng? + Tính phương sai của dãy số liệu: 1, 3, 3, 5, 7, 9, 10, 11, 11, 11. + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại C, phương trình đường thẳng chứa cạnh AB là x + y – 2 = 0. Biết tam giác ABC có trọng tâm G(14/3;5/3) và diện tích bằng 65/2. Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Đề kiểm tra chuyên đề lớp 10 môn Toán lần 1 năm 2019 2020 trường Quang Hà Vĩnh Phúc
Nội dung Đề kiểm tra chuyên đề lớp 10 môn Toán lần 1 năm 2019 2020 trường Quang Hà Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT Quang Hà – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 10 lần thứ nhất năm học 2019 – 2020, nhằm khảo sát chất lượng Toán lớp 10 giai đoạn giữa học kỳ 1. Đề kiểm tra chuyên đề Toán lớp 10 lần 1 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc gồm có 02 mã đề, đề gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra chuyên đề Toán lớp 10 lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Tìm hàm số bậc nhất y = ax + b biết rằng đồ thị hàm số đi qua điểm M(0;3) và N(4;5). [ads] + Cho phương trình: x^2 – 2x + 2m – 3 = 0 (x là ẩn, m là tham số). a) Giải phương trình với m = 0. b) Tìm m để phương trình có hai nghiệm dương phân biệt. + Cho hình chữ nhật ABCD, có AB = 2a, AD = 3a, O là giao điểm của hai đường chéo. a) Chứng minh rằng PA + PC = PB + PD với P là điểm bất kì. b) Tính |AB + AD – 3AC|. c) Tìm điểm M trên đường thẳng (AC) sao cho |MA + MB – MC| đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Đề KSCL giữa học kỳ 2 Toán 10 năm 2017 - 2018 trường B Bình Lục - Hà Nam
Đề KSCL giữa học kỳ 2 Toán 10 năm 2017 – 2018 trường B Bình Lục – Hà Nam mã đề 101 gồm 2 phần, phần trắc nghiệm (3 điểm ) gồm 12 câu hỏi trắc nghiệm khách quan, phần tự luận (7 điểm) gồm 5 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề KSCL giữa học kỳ 2 Toán 10 : + Cho tam giác ABC biết BC = 21cm, CA = 17cm, AB = 10cm. Tính diện tích tam giác ABC và tính tổng bán kính đường tròn ngoại tiếp và nội tiếp tam giác đó. + Tam giác ABC có AB = c, BC = a, CA = b và có diện tích là S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn góc C thì khi đó diện tích của tam giác mới tạo nên bằng? [ads] + Trong mặt phẳng Oxy, cho hai điểm A(2; 1), B(-1; 3) và đường thẳng d: x = 1 – t, y = 2 + 2t. a) Lập phương trình tham số đường thẳng đi qua hai điểm A và B. b) Điểm M có tọa độ nguyên nằm trên đường thẳng d sao cho AM = √34.Tìm tọa độ điểm M.
Đề khảo sát THPTQG lần 1 lớp 10 môn Toán năm 2019 2020 trường chuyên Vĩnh Phúc
Nội dung Đề khảo sát THPTQG lần 1 lớp 10 môn Toán năm 2019 2020 trường chuyên Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi Trung học Phổ thông Quốc gia lần 1 môn Toán lớp 10 năm học 2019 – 2020. Đề khảo sát THPTQG lần 1 Toán lớp 10 năm 2019 – 2020 trường chuyên Vĩnh Phúc có mã đề 897, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi gồm có 05 trang, đây là kỳ thi được tổ chức thường xuyên qua các năm lớp 10 – lớp 11 – lớp 12, nhằm có sự chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán, đề thi có đáp án. Trích dẫn đề khảo sát THPTQG lần 1 Toán lớp 10 năm 2019 – 2020 trường chuyên Vĩnh Phúc : + Cho tam giác đều ABC có trọng tâm G. Điểm M tùy ý nằm trong tam giác. Gọi D, E, F lần lượt là điểm đối xứng với M qua BC, CA, AB; X, Y, Z là các điểm đối xứng với M qua các trung điểm của BC, CA, AB. Khẳng định nào sau đây đúng? + Một vật có trọng lượng P = 20N được đặt trên một mặt phẳng nghiêng với góc nghiêng α = 30 độ (hình vẽ). Khi đó độ lớn của các lực N, FP lần lượt là bao nhiêu? [ads] + Cho tam giác ABC đều có cạnh bằng 6cm. Biết tập hợp các điểm M thỏa mãn |MA + 2MB + 3MC| = |MA + 2MB – 3MC| là một đường tròn. Hỏi đường tròn đó có bán kính bằng bao nhiêu? + Hàm số y = ax + b có đồ thị là đường thẳng (d). Biết (d) đi qua điểm M(2;3) sao cho khoảng cách từ O tới đường thẳng (d) là lớn nhất. Tính T = 3a + 2b. + Cho tam giác ABC có AB = 3, BC = 6, CA = 7. Gọi I là tâm đường tròn nội tiếp tam giác ABC. G là trọng tâm tam giác. Khẳng định nào sau đây đúng? File WORD (dành cho quý thầy, cô):