Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 23 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm mã đề 01 và mã đề 02. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Một khu vườn hình chữ nhật có chu vi bằng 72m. Nếu tăng chiểu rộng lên gấp đôi và tăng chiều dài lên gấp ba thì chu vi của khu vườn mới là 194m. Tính diện tích khu vườn. Nếu họ dành 40% đất vườn đề làm nhà còn lại diện tích để trổng rau. Biết rằng mỗi mét vuông đất họ thu hoạch được 10000 đồng tiền rau. Hỏi gia đình đó thu được bao nhiêu tiền bán rau? + Cho tam giác ABC vuông tại A, đường cao AH = 4cm và sinC = 0,5. Kẻ HM song song với AC, HN song song với AB (M thuộc AB, N thuộc AC). Tính độ dài AC và diện tích tứ giác AMHN. + Cho đường tròn (O; R), dây MN không đi qua tâm. Trên tia đối của tia MN lấy điểm A. Từ A kẻ các tiếp tuyến AB, AC tới đường tròn (O) (B, C là tiếp điểm và tia AM nằm giữa 2 tia AO và AB). Gọi I là trung điểm của MN. a) Chứng minh bốn điểm A, B, O, I cùng thuộc một đường tròn. b) Gọi H là giao điểm của OA và BC, K là giao điểm của OI và BC. Chứng minh tứ giác MHON nội tiếp đường tròn và KM là tiếp tuyến của đường tròn (O).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội
Nội dung Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội Ngày 28 tháng 05 năm 2020, trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề thi thử này bao gồm 02 trang với 05 bài toán dạng tự luận, và thời gian làm bài là 120 phút. Trích dẫn một số bài toán trong đề thi thử: Bài toán 1: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tại hội khỏe phù đổng của thành phố Hà Nội, có 56 đội bóng đã đăng ký tham gia. Ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, sau khi có đội không tham dự, ban tổ chức quyết định tăng thêm ở mỗi bảng 1 đội, dẫn đến giảm 3 bảng đấu. Hỏi số bảng dự kiến lúc đầu là bao nhiêu? Bài toán 2: Người ta thả một quả trứng vào cốc thủy tinh hình trụ có chứa nước, trứng chìm hoàn toàn xuống đáy cốc và nằm ngang, chứng tỏ qua trứng đó còn tươi (được đẻ từ 1 đến 2 ngày). Hãy tính thể tích quả trứng biết diện tích đáy của cột nước hình trụ là 16,7 cm2 và nước trong cốc dâng thêm 8,2 mm. Bài toán 3: Cho tứ giác ABCD nội tiếp (O) đường kính AD, gọi E là giao điểm của AC và BD. Kẻ EF vuông góc với AD tại F. Em cần chứng minh rằng tứ giác ABEF nội tiếp được đường tròn và CA là tia phân giác của góc BCF. Đề thi thử vào lớp 10 môn Toán tại trường THCS Giảng Võ Hà Nội là cơ hội để học sinh thử sức và chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.
Tuyển tập đề thi vào chuyên môn Toán
Nội dung Tuyển tập đề thi vào chuyên môn Toán Bản PDF - Nội dung bài viết Tuyển tập đề thi vào chuyên môn Toán Tuyển tập đề thi vào chuyên môn Toán Tuyển tập đề thi vào chuyên môn Toán bao gồm 838 trang được biên soạn bởi nhóm GeoGebraPro, với lời giải chi tiết. Tài liệu này bao gồm các đề thi tuyển sinh vào lớp 10 của nhiều trường chuyên khác nhau trên cả nước. Cụ thể, tài liệu này chứa 118 đề thi vào chuyên Toán của Sở giáo dục và Đào tạo Hà Nội từ năm 2009 đến 2010, 166 đề thi vào các trường chuyên khác như Vĩnh Phúc, Hải Phòng, Hà Tĩnh, Hưng Yên, Hòa Bình, và nhiều trường khác trên cả nước từ năm 2016 đến 2017. Với đa dạng đề thi từ nhiều tỉnh thành, tuyển tập này cung cấp cho các học sinh nguồn tư liệu phong phú để ôn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Lời giải chi tiết kèm theo mỗi đề thi sẽ giúp học sinh hiểu rõ hơn về cách giải các bài toán và nắm vững kiến thức Toán. Với tuyển tập đề thi vào chuyên môn Toán này, học sinh sẽ có cơ hội rèn luyện kỹ năng giải bài tập, nâng cao kiến thức và tự tin hơn khi bước vào kỳ thi tuyển sinh quan trọng.
Tuyển tập đề thi vào không chuyên môn Toán
Nội dung Tuyển tập đề thi vào không chuyên môn Toán Bản PDF - Nội dung bài viết Tuyển Tập Đề Thi Vào Lớp 10 Không Chuyên Môn Toán Tuyển Tập Đề Thi Vào Lớp 10 Không Chuyên Môn Toán Tuyển tập đề thi vào lớp 10 không chuyên môn Toán gồm 862 trang được biên soạn bởi nhóm GeoGebraPro với đáp số và lời giải chi tiết. Tài liệu này được thiết kế nhằm giúp học sinh ôn tập để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT sắp tới. Quý thầy, cô giáo đã biên soạn các đề thi đa dạng từ các tỉnh thành như Bà Rịa - Vũng Tàu, Bạc Liêu, Bến Tre, Bình Phước, Bình Định, Đắk Lắk, Đắk Nông, Điện Biên, Đồng Nai, Hà Nam, Hà Nội, Hà Tĩnh, Hải Dương, Hải Phòng, Hòa Bình, Long An, Nam Định, Nghệ An, Ninh Thuận, Quảng Nam, Quảng Ninh, Thái Bình, Thái Nguyên, Thanh Hóa, Trà Vinh, Vĩnh Long, An Giang, Bắc Giang, Bắc Kạn, Bắc Ninh, và nhiều tỉnh thành khác.
Đề thi thử vào môn Toán lần 2 năm 2020 2021 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử vào môn Toán lần 2 năm 2020 2021 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội Đề thi thử vào môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội Ngày ... tháng 05 năm 2020, trường THCS và THPT Lương Thế Vinh, thành phố Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020-2021 lần thi thứ hai. Đề thi thử vào lớp 10 môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội bao gồm 5 bài toán dạng tự luận, theo cấu trúc đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề thi thử vào lớp 10 môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội: + Cho đường tròn (O;R) và dây cung BC = R√3 cố định. Một điểm A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, AM là đường kính của (O). Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF nội tiếp. b) Chứng minh tứ giác BHCM là hình bình hành và tính độ dài của đoạn AH. c) Kẻ DP vuông góc với BE tại P, đường thẳng qua P và vuông góc với đường kính AM cắt CF tại Q. Chứng minh rằng PQ ≤ HD. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe theo kế hoạch chở hết 200 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 25 tấn. Tính thời gian đội chở hết hàng theo kế hoạch. + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m-3)x + 2m-5. a) Khi m = 4 , hãy tìm tọa độ giao điểm của (P) và (d). b) Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B nằm khác phía của trục Oy sao cho tam giác OAB vuông tại O. 3. Tìm m để phương trình sau có bốn nghiệm phân biệt x^4 - (3m - 2)x^2 + 3m - 3 = 0.