Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm định HSG lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề kiểm định HSG lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề kiểm định học sinh giỏi Toán lớp 7 năm 2021-2022 Đề kiểm định học sinh giỏi Toán lớp 7 năm 2021-2022 Xin chào quý thầy cô và các em học sinh lớp 7! Chúng tôi xin giới thiệu đến các bạn Đề kiểm định chất lượng học sinh giỏi môn Toán lớp 7 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 12 tháng 03 năm 2022. Đề kiểm định Học sinh giỏi Toán lớp 7 năm 2021-2022 của phòng GD&ĐT Triệu Sơn, Thanh Hóa bao gồm các phần sau: Tìm tất cả các số nguyên x, y thỏa mãn. Chứng minh rằng nếu số tự nhiên abc là số nguyên tố thì b2 - 4ac không là số chính phương. Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ AB có chứa C vẽ tam giác ABD vuông cân tại B. Gọi E là trung điểm của BD. Đường thẳng qua C vuông góc với AE tại M cắt AB tại P. Chứng minh: ABE = CAP. Từ B kẻ đường thẳng vuông góc với AE tại H. Chứng minh: MA = MH. Chứng minh tam giác HBM vuông cân. Gọi N là trung điểm của CM, đường thẳng BM cắt đường thẳng DN tại K. Tính số đo góc BKD. Hy vọng rằng đề kiểm định này sẽ giúp các em ôn tập và nâng cao kiến thức, kỹ năng Toán của mình. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Hà - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Hà, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Hà – Hải Dương : + Tìm các số nguyên x, y thỏa mãn xy − 3x + 2y = 11. Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng (p – 1)(p + 1) chia hết cho 24. + Cho ∆ABC có góc A nhọn, AB = AC. Gọi M là trung điểm của BC. Qua A vẽ đường thẳng xy song song với BC. 1) Chứng minh AM ⊥ xy. 2) So sánh các cạnh của ∆AMB. 3) Gọi O là điểm nằm trong ∆AMC. Chứng minh OA + OC < MA + MC. + Cho xyz không âm thoả mãn x z 3 2022 và x y 2 2023. Tìm giá trị lớn nhất của biểu thức Pxyz.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho đa thức 2 Q x ax bx c 4. Chứng minh rằng nếu đa thức Q x nhận 2 và -2 là nghiệm thì a và c là hai số đối nhau. + Cho ∆ABC vuông tại A (AB < AC), D là trung điểm của BC, trên tia đối của tia DA lấy điểm E sao cho DE DA. Gọi H và K thứ tự là chân đường vuông góc hạ từ B và C xuống đường thẳng AE, M là chân đường vuông góc hạ từ D xuống AC. a) Chứng minh BK CH. b) Chứng minh CD KM. c) Từ E kẻ đường thẳng vuông góc với BC tại P và cắt BH tại N. Chứng minh ba điểm D, M, N thẳng hàng. d) Giả sử 0 ACB 36 tia phân giác của ACB cắt AD tại F. Chứng minh tam giác CEF là tam giác cân. + Một cái hộp đựng 60 quả bóng giống nhau, gồm ba màu: màu đỏ, màu xanh và màu vàng. Trong đó có 18 quả bóng màu đỏ và 25 quả bóng màu vàng. Hỏi cần phải lấy ra ngẫu nhiên ít nhất bao nhiêu quả bóng để chắc chắn rằng lấy ra được 2 quả bóng xanh?
Đề học sinh giỏi Toán 7 năm 2022 - 2023 trường THCS Ba Đồn - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS Ba Đồn, thị xã Ba Đồn, tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 trường THCS Ba Đồn – Quảng Bình : + Một trường THCS có ba lớp 7, tổng số học sinh hai lớp 7A, 7B là 85 em, Nếu chuyển 10 học sinh từ lớp 7A sang lớp 7C thì số học sinh ba lớp 7A, 7B, 7C tỉ lệ thuận với 7; 8; 9. Hỏi lúc đầu mỗi lớp có bao nhiêu học sinh? + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p + 1)(p − 1) chia hết cho 24. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. a) Chứng minh: MD = ME. b) Trên tia đối của tia CA lấy điểm K sao cho CK = BD, DK cắt BC tại I. Chứng minh I là trung điểm của DK. c) Đường vuông góc với DK tại I cắt AM tại S. Chứng minh SC ⊥ AK.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng các thửa ruộng A; B; C lần lượt tỉ lệ thuận với 4; 5; 6. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của thửa ruộng B và C là 42 m. Tính chiều dài mỗi thửa ruộng? + Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại điểm M. Lấy điểm D trên cạnh BC sao cho BD = BA. Gọi E là giao điểm của hai đường thẳng DM và BA. 1) Chứng minh: MA = MD 2) Kẻ DH ⊥ MC; AK ⊥ ME (H thuộc MC; K thuộc ME), gọi N là giao điểm của hai tia DH và AK. Chứng minh MHN = MKN và ba điểm B, M, N thẳng hàng 3) Từ C kẻ đường thẳng vuông góc với AC cắt tia BM tại F. Chứng minh: AB AM CF CM. + Cho tích A = 1.2.3.4.5…398.399.400. Hỏi tích A có tận cùng bao nhiêu chữ số 0?