Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 lần 1 sở GDĐT Ninh Bình

Ngày … tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 lần 1 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 lần 1 sở GD&ĐT Ninh Bình : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Có 2 loại dung dịch muối ăn, một loại chứa 1% muối ăn và loại còn lại chứa 3,5% muối ăn. Hỏi cần lấy bao nhiêu cân dung dịch mỗi loại trên để hoà lẫn với nhau tạo thành 140 cân dung dịch chứa 3% muối ăn? [ads] + Cho đoạn thẳng HK = 5cm. Vẽ đường tròn tâm H, bán kính 2cm và đường tròn tâm K, bán kính 3cm. a) Xác định vị trí tương đối của hai đường tròn trên. b) Trên đoạn thẳng HK lấy điểm I sao cho IK = 1cm. Vẽ đường thẳng đi qua I và vuông góc với HK, đường thẳng này cắt đường tròn (K) tại hai điểm P, Q. Tính diện tích tứ giác HPKQ. + Một bể cá làm bằng kính dạng hình hộp chữ nhật có thể tích là 500dm3 và chiều cao là 5dm (bỏ qua chiều dày của kính làm bể cá). a) Tính diện tích đáy của bể cá trên. b) Đáy của bể cá trên có thể có chu vi nhỏ nhất bằng bao nhiêu? Tại sao?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên (đề thi dành cho thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin học); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hưng Yên : + Cho ABC nhọn AB AC nội tiếp đường tròn O. Hai đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC. a) Chứng minh tứ giác BFEC nội tiếp, từ đó suy ra KF.KE = KB.KC. b) Đường thẳng AK cắt đường tròn (O) tại điểm thứ hai là M (M khác A). Gọi I là trung điểm của đoạn thẳng BC. Chứng minh ba điểm M, H, I thẳng hàng. + Một chi tiết máy gồm hai nửa hình cầu bằng nhau và một hình trụ (hình vẽ). Hãy tính thể tích của chi tiết máy đó theo các kích thước cho trên hình vẽ. + Trong mặt phẳng tọa độ Oxy, cho parabol 2 P y x và đường thẳng 1 5 d y m x m. Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt 1 1 A x y 2 2 B x y sao cho 1 2 x x là các số nguyên.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT & THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi gồm 02 trang với 08 câu trắc nghiệm (20% tổng số điểm) và 05 câu tự luận (80% tổng số điểm), thời gian làm bài 90 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hậu Giang : + Cho đường tròn O có bán kính R 3 và điểm M sao cho OM R 2. Từ M kẻ hai tiếp tuyến MA MB tới O với A và B là hai tiếp điểm. c) Chứng minh tứ giác MAOB nội tiếp. Tính diện tích S của tứ giác MAOB. d) Lấy điểm C trên đường tròn O sao cho tam giác ABC nhọn AB AC và có các đường cao BE CF. Gọi H là trực tâm tam giác ABC và N J lần lượt là trung điểm của BC AH. Chứng minh tứ giác AJNO là hình bình hành và JEN 90. + Tính chu vi của đường tròn ngoại tiếp tam giác, biết tam giác ABC vuông tại A và BC a 6. + Cho hình thang có đáy lớn BC đáy nhỏ AD AD BC cm AC cm 10 5 2 và ACB 45. Tính diện tích S của hình thang đã cho.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho tam giác ABC AB AC có các góc nhọn nội tiếp đường tròn O R. Các đường cao AK BE CF của tam giác ABC cắt nhau tại H và cắt đường tròn O R tại các điểm lần lượt là MNP (M khác A N khác B P khác C). 1. Chứng minh EF PN. 2. Chứng minh diện tích tứ giác AEOF bằng 2 EF R 3. Tính giá trị của biểu thức AM BN CP AK BE CF 4. Gọi S và Q là chân đường vuông góc kẻ từ điểm K đến các cạnh AB AC. Đường thẳng QS cắt BC tại G, đường thẳng GA cắt đường tròn O R tại điểm J (J khác A). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQS. Chứng minh ba điểm IKJ thẳng hàng. + Cho đường thẳng (d) có phương trình ym xm 2 21 (với m là tham số) và điểm A(−1;2). Tìm tất cả các giá trị của m để khoảng cách từ điểm A đến đường thẳng (d) đạt giá trị lớn nhất. + Cho ba số thực dương abc thỏa mãn 222 a b c ab bc ca 22 0. Chứng minh: 222 2 2 2 2 3 a b c c ab a b abc ab.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho tam giác ABC nhọn AB AC nội tiếp đường tròn (O), các đường cao AD BE CF cắt nhau tại H. Gọi M là trung điểm BC. a) Chứng minh tứ giác DMEF là tứ giác nội tiếp. b) Đường tròn tâm I đường kính AH cắt đường tròn (O) tại điểm thứ hai là P. Kẻ đường kính AK của đường tròn (O). Chứng minh bốn điểm P H M K thẳng hàng. c) Các tiếp tuyến tại A và P của đường tròn (I) cắt nhau ở N. Chứng minh ba đường thẳng MN EF AH đồng quy. + Có tất cả bao nhiêu đa thức P x có bậc không lớn hơn 2 với các hệ số nguyên không âm và thỏa mãn điều kiện P(3) = 100. + Cho phương trình 3 2 x bx cx 1 0 trong đó b c là các số nguyên. Biết phương trình có nghiệm 0 x 2 5. Tìm b c và các nghiệm còn lại của phương trình.