Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hải Dương

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 tỉnh Hải Dương năm 2022 - 2023 Đề thi học sinh giỏi Toán lớp 9 tỉnh Hải Dương năm 2022 - 2023 Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Hải Dương. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận. Thời gian làm bài là 150 phút, đề thi đi kèm đáp án, lời giải chi tiết và thang điểm. Kỳ thi được tổ chức vào thứ Tư ngày 11 tháng 01 năm 2023. Trích dẫn nội dung đề học sinh giỏi Toán lớp 9 tỉnh Hải Dương năm 2022 - 2023: Giải phương trình nghiệm nguyên: x^3 - y^3 - 2y^2 - 3y - 1 = 0. Tìm số nguyên tố p sao cho 2041 - p^2 không chia hết cho 24. Cho đường tròn (O) có đường kính AB, vẽ tiếp tuyến d1 và d2 qua A và B tương ứng. Từ điểm M trên đường tròn (O), vẽ tiếp tuyến với đường tròn cắt d1 tại C và d2 tại D. Kẻ MH vuông góc với AB tại H. a) Chứng minh rằng: AD, BC, MH đồng quy tại trung điểm của MH. b) Đường tròn (O) có đường kính CD cắt đường tròn (O) tại E và F (E thuộc cung AM). Chứng minh rằng EF đi qua trung điểm của MH. Cho tam giác ABC đều cạnh a. Điểm M di chuyển trên BC, vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Tính giá trị nhỏ nhất của đoạn EF theo a. Đề thi trình bày những bài toán thú vị, đa dạng mức độ khó khăn, giúp học sinh thử thách và phát triển khả năng tư duy logic, sáng tạo trong giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.