Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 1 trường THPT chuyên Bến Tre

Nhằm hỗ trợ các em học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức, giới thiệu đến các em đề thi thử Toán THPT Quốc gia 2019 lần 1 trường THPT chuyên Bến Tre. Đề thi có mã đề 132 gồm 7 trang, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 1 trường THPT chuyên Bến Tre : + Trong kỳ thi chọn học sinh giỏi tỉnh có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có năm ghế và mỗi ghế chỉ ngồi được một học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. [ads] + Một cái ao hình ABCDE (như hình vẽ), ở giữa ao có một mảnh vườn hình tròn có bán kính 10m. Người ta muốn bắc một câu cầu từ bờ AB của ao đến vườn. Tính gần đúng độ dài tối thiếu l của cây cầu biết: Hai bờ AE và BC nằm trên hai đường thẳng vuông góc với nhau, hai đường thẳng này cắt nhau tại điểm O. Bờ AB là một phần của một parabol có đỉnh là điểm A và có trục đối xứng là đường thẳng OA. Độ dài đoạn OA và OB lần lượt là 40 m và 20 m. Tâm I của mảnh vườn lần lượt cách đường thẳng AE và BC lần lượt 40 m và 30m. + Sinh viên B được gia đình gửi tiết kiệm số tiền 300 triệu đồng vào ngân hàng theo mức kì hạn 1 tháng với lãi suất tiết kiệm là 0,4%/tháng. Mỗi tháng, vào ngày ngân hàng tính lãi, sinh viên B rút ra một số tiền như nhau để trang trải chi phí cho cuộc sống. Hỏi hàng tháng sinh viên này rút số tiền xấp sỉ bao nhiêu để sau 5 năm học đại học, số tiền tiết kiệm vừa hết?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa học kỳ 1 năm học 2017 - 2018 môn Toán 12 trường THPT Đống Đa - Hà Nội
Đề kiểm tra giữa học kỳ 1 năm học 2017 – 2018 môn Toán 12 trường THPT Đống Đa – Hà Nội gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hai vị trí A , B cách nhau , cùng nằm về một phía bờ song như hình vẽ. Khoảng cách từ A và từ B đến bờ sông lần lượt là 118 m và 478 km. Một người đi từ A đến bờ sông để lấy nước mang về B. Đoạn đường ngắn nhất mà người đó có thể đi là: A. 569,5 m B. 671,4 m C. 779,8 m D. 741,2 m [ads] + Cho hàm số y = f(x) = ax^4 + bx^2 + 1 (a ≠ 0). Trong các khẳng định dưới đây, khẳng định nào là đúng? A. Hàm số nhận gốc tọa độ làm tâm đối xứng B. Hàm số nhận trục hoành làm trục đối xứng C. Với a > 0 , hàm số có ba điểm cực trị luôn tạo thành một tam giác cân D. Với mọi giá trị của tham số a, b (a ≠ 0) thì hàm số luôn có cực trị + Cho hình tứ diện ABCD có DA = BC = 5, AB = 3, AC = 4. Biết DA vuông góc với mặt phẳng (ABC). Thể tích của khối tứ diện ABCD là: A. V = 10 B. V = 20 D. V = 30 D. V = 60
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Đoàn Thượng - Hải Dương
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 12 trường THPT Đoàn Thượng – Hải Dương gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Cho hàm số y = f(x) liên tục, đồng biến trên đoạn [a; b]. Khẳng định nào sau đây đúng? A. Phương trình f(x) = 0 có nghiệm duy nhất thuộc đoạn [a; b] B. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng [a; b] C. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn [a; b] D. Hàm số đã cho có cực trị trên đoạn [a; b] [ads] + Cho tứ diện ABCD có vtAB.vtAC = vtAB.vtAD ≠ 0. Khẳng định nào sau đây đúng? A. AC và BD vuông góc B. AB và BC vuông góc B. AB và CD vuông góc D. Không có cặp cạnh đối diện nào vuông góc + Cho hình chóp đều S.ABCD. Gọi O là giao điểm của AC và BD. Phát biểu nào sau đây là đúng? A. Không tồn tại phép dời hình biến hình chóp S.ABCD thành chính nó B. Ảnh của hình chóp S.ABCD qua phép tịnh tiến theo vectơ AO là chính nó C. Ảnh của hình chóp S.ABCD qua phép đối xứng mặt phẳng (ABCD) là chính nó D. Ảnh của hình chóp S.ABCD qua phép đối xứng trục SO là chính nó
Đề khảo sát chất lượng tháng 10 năm 2017 bài thi Toán 12 trường THPT Quế Võ số 2 - Bắc Ninh
Đề khảo sát chất lượng tháng 10 năm 2017 bài thi Toán 12 trường THPT Quế Võ số 2 – Bắc Ninh gồm 192 trang với 24 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Trích dẫn đề thi : + Một đoàn cứu trợ lũ lụt đang ở vị trí A của một tỉnh miền trung muốn đến xã C để tiếp tế lương thực và thuốc men, phải đi theo con đường từ A đến B và từ B đến C (như hình vẽ). Tuy nhiên, do nước ngập con đường từ A đến B nên đoàn cứu trợ không thể đến C bằng xe, nhưng đoàn cứu trợ có thể chèo thuyền từ A đến vị trí D với vận tốc 4km/h, rồi đi bộ đến C với vận tốc 6km/h. Biết A cách B một khoảng 5km, B cách C một khoảng 7km. Hỏi vị trí điểm D cách A bao xa để đoàn cứu trợ đi đến xã C nhanh nhất? A. AD = 2√5 km B. AD = 3√5 km C. AD = 5√2 km D. AD = 5√3 km [ads] + Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau. Mệnh đề nào sau đây đúng? A. Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh B. Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng C. Mọi khối đa diện đều có số mặt là những số chia hết cho 4 D. Khối lập phương và khối bát diện đều có cùng số cạnh + Xét hình chóp tứ giác đều S.ABCD có tam giác S AC nội tiếp trong đường tròn có bán kính bằng 9. Gọi d là khoảng cách từ S đến mặt phẳng (ABCD) và T là diện tích tứ giác ABCD. Tính d khi biểu thức P = d.T đạt giá trị lớn nhất. A. d = 10 B. d = 17 C. d = 15 D. d = 12
Đề kiểm tra giữa học kỳ I năm học 2017 2018 môn Toán 12 trường THPT Chu Văn An Hà Nội
Đề kiểm tra giữa học kỳ I năm học 2017 – 2018 môn Toán 12 trường THPT Chu Văn An – Hà Nội gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Nội dung đề gồm chương khảo sát hàm số và hình học không gian. Đề kiểm tra có đáp án.