Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Nguyễn Trãi Thanh Hoá

Nội dung Đề khảo sát lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Nguyễn Trãi Thanh Hoá Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng môn Toán lớp 10 lần 2 năm học 2022 – 2023 trường THPT Nguyễn Trãi, tỉnh Thanh Hoá; đề thi có 04 trang, gồm 35 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết mã đề 201 202 203 204 205 206 207 208. Trích dẫn Đề khảo sát Toán lớp 10 lần 2 năm 2022 – 2023 trường THPT Nguyễn Trãi – Thanh Hoá : + Cho tam giác ABC với các cạnh AB c AC b BC a. Gọi R r S lần lượt là bán kính đường tròn ngoại tiếp, đường tròn nội tiếp, diện tích của tam giác ABC. Trong các phát biểu sau, phát biểu nào sai? + Có hai hòn đảo xem như hình tròn là (C) có tâm ở vị trí I (3;4), bán kính R = 7 km và (C′) có tâm ở vị trí J (15;9), bán kính R′ = 5km. Người ta dự định xây một cây cầu nối hai hòn đảo. Tính độ dài ngắn nhất của cây cầu? + Thầy giáo có 5 cuốn sách Toán, 6 cuốn Vật lý và 7 cuốn Hóa học (các cuốn sách cùng loại giống nhau) để làm giải thưởng cho 9 học sinh, mỗi học sinh được 2 cuốn khác loại. Trong 9 học sinh trên có 2 bạn An và Bình. Tính số cách chia để 2 bạn An và Bình có phần thưởng giống nhau?

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 cấp trường năm 2018 - 2019 trường Yên Phong 2 - Bắc Ninh
Vào ngày 26 tháng 01 năm 2019, trường THPT Yên Phong số 2, tỉnh Bắc Ninh đã tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 10 cấp trường năm học 2018 – 2019, kỳ thi nhằm tuyển chọn các em học sinh giỏi môn Toán 10 để khen thưởng, làm tấm gương sáng cho các học sinh trong trường, đồng thời tiếp tục bồi dưỡng để các em tham dự được kỳ thi học sinh Toán 10 cấp tỉnh. Đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Yên Phong 2 – Bắc Ninh gồm 01 trang, đề được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 150 phút, lời giải chi tiết và thang điểm được đính kèm ở bên dưới đề thi để các em thuận tiện tra cứu. [ads] Trích dẫn đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Yên Phong 2 – Bắc Ninh : + Cho hàm số y = x^2 – (2m – 3)x – 2m + 2 (1). 1) Xét sự biến thiên và vẽ đồ thị hàm số (1) khi m = 0. 2) Xác định m để đồ thị hàm số (1) cắt đường thẳng y = 3x – 1 tại hai điểm A, B phân biệt sao cho tam giác OAB vuông tại O (với O là gốc toạ độ). + Cho tam giác ABC có AB = 1, AC = x và góc BAC = 60 độ. Các điểm M, N được xác định bởi MC = -2MB và NB = -2NA. Tìm x để AM và CN vuông góc với nhau. + Cho tam giác ABC. Chứng minh rằng với G là trọng tâm tam giác ABC ta có: GA.GB + GB.GC + GC.GA = -1/6.(AB^2 + BC^2 + CA^2).
Đề thi HSG Toán 10 cấp trường năm 2018 - 2019 trường Thuận Thành 2 - Bắc Ninh
Nhằm tuyển chọn các em học sinh khối lớp 10 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán 10 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 10 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức tự luận với 06 bài toán, đề gồm 01 trang, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Cho x1 và x2 là hai nghiệm của phương trình x^2 – 3x + a = 0; x3 và x4 là hai nghiệm của phương trình x^2 – 12x + b = 0. Biết rằng x2/x1 = x3/x2 = x4/x3. Tìm a và b. + Trên mặt phẳng tọa độ cho hai điểm A(-1;1); B(2;4). a) Tìm điểm C trên trục Ox sao cho tam giác ABC vuông tại B. b) Tìm điểm D sao cho tam giác ABD vuông cân tại A. + Cho hàm số y = x^2 – 4x + 4 – m (Pm). a) Khảo sát và vẽ đồ thị hàm số với m = 1. b) Tìm m để (Pm) cắt trục hoành tại 2 điểm phân biệt có hoành độ cùng thuộc đoạn [-1;4].
Đề thi chọn HSG Toán 10 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh
Đề thi chọn HSG Toán 10 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức vào ngày 14 tháng 04 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 cấp trường năm 2017 – 2018 : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Trung điểm cạnh AB là M(0; 3), trung điểm đoạn CI là J(1;0). Tìm tọa độ các đỉnh của hình vuông, biết đỉnh D thuộc đường thẳng ∆: x – y + 1 = 0. [ads] + Cho Parabol (P): y = x^2 + 2mx + 3 và đường thẳng (d): y = 2x − 1. Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt A và B thỏa mãn AB = 10. + Cho tam giác ABC có BC = 2, góc A = 60 độ và hai đường trung tuyến BM, CN vuông góc với nhau. Tính diện tích tam giác ABC.
Đề thi chọn HSG cấp trường Toán 10 năm 2017 - 2018 trường THPT Con Cuông - Nghệ An
Đề thi chọn HSG cấp trường Toán 10 năm 2017 – 2018 trường THPT Con Cuông – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG cấp trường Toán 10 năm 2017 – 2018 : + Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn vtBD = 2/3.vtBC, vtAE = 1/4.vtAC. Điểm K trên đoạn thẳng AD sao cho 3 điểm B, K, E thẳng hàng. Tìm tỉ số AD/AK. [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại B, AB = 2BC, D là trung điểm AB, E là điểm thuộc đoạn AC sao cho AC = 3EC, có phương trình CD: x – 3y + 1 = 0, E(16/3;1). a) Chứng minh rằng BE là phân giác trong của góc B. Tìm tọa độ điểm I là giao của CD và BE. b) Tìm tọa độ các đỉnh A, B, C, biết A có tung độ âm.