Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Cho hàm số y = x4 – 2(m + 1)x2 + 2m + 1 có đồ thị (C). a) Với m = 1, tính diện tích của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị (C). b) Tìm tất cả các giá trị dương của tham số m để đồ thị (Cm) cắt trục hoành tại bốn điểm phân biệt và tiếp tuyến của (Cm) tại giao điểm có hoành độ lớn nhất hợp với hai trục tọa độ một tam giác có diện tích bằng 24. + Bạn An chọn ngẫu nhiên 3 quả cầu từ hộp gồm 19 quả cầu được đánh số thứ tự từ 1 đến 19. Hỏi có bao nhiêu cách chọn sao cho các số thứ tự ghi trên 3 quả cầu có tổng chia hết cho 4. + Biết rằng với mỗi n thuộc N*, luôn tồn tại duy nhất hai số nguyên dương an, bn sao cho. Chứng minh là số chính phương.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho hàm số 1 2 2 2024 2023 2022 1 2024 2023 2022 m m y x x x (m là tham số thực). Biện luận theo m số điểm cực trị của hàm số đã cho. + b. Cho phương trình 2 m x x x 2 2 2. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. SA vuông góc với mặt phẳng (ABCD). AB BC a AD a 2 SA a 3. a. Tính thể tích khối chóp S.ABCD. b. Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD). c. Gọi M là điểm nằm trên cạnh SA sao cho SM x = (0 3 x a). Mặt phẳng (BCM ) chia hình chóp thành hai phần có thể tích là V1 và V2 (trong đó V1 là thể tích của phần chứa đỉnh S). Tìm x để V V 2 1 2.
Đề chọn học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai
Nội dung Đề chọn học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc Trung học Phổ thông cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào sáng thứ Ba ngày 08 tháng 11 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Gia Lai : + Tìm tất cả các bộ ba số nguyên dương (a;b;c) sao cho với mọi số nguyên dương n không có ước nguyên tố nhỏ hơn 2022 ta luôn có an + bn + n chia hết cho n + c. + Cho tam giác nhọn ABC nội tiếp đường tròn (O), P là một điểm thay đổi trên cung nhỏ AC của (O) và K là tâm đường tròn Euler của tam giác PBC. a) Chứng minh rằng, đường thẳng qua K vuông góc với PA luôn đi qua một điểm cố định khi P di chuyển. b) Gọi H là hình chiếu của K lên PA. Chứng minh rằng, đường trung trực của đoạn AH luôn đi qua một điểm cố định khi P di chuyển. + Cho tập hợp A = {1; 2; 3; …; 2022}. Đặt F = {X | X con A và S(X) chia hết cho 3} với S(X) là tổng các phần tử của X. a) Tìm số phần tử của tập F có chứa 2022. b) Hãy tính tổng S(X).