Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tháng lần 2 Toán 12 năm 2023 - 2024 trường THPT Ngô Sĩ Liên - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8?

Nguồn: toanmath.com

Đọc Sách

Đề đánh giá chất lượng lớp 12 môn Toán năm 2020 2021 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2020 2021 trường Đại học Hồng Đức Thanh Hóa Bản PDF Đề đánh giá chất lượng Toán lớp 12 năm học 2020 – 2021 trường Đại học Hồng Đức – Thanh Hóa được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2020 – 2021 trường Đại học Hồng Đức – Thanh Hóa : + Ông Đức gửi ngân hàng số tiền 500.000.000 đồng loại kỳ hạn 6 tháng với lãi suất 5,6% trên một năm theo thể thức lãi kép (tức là nếu đến kỳ hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kỳ kế tiếp). Hỏi sau 3 năm 9 tháng ông Đức nhận được số tiền (làm tròn đến hàng nghìn) cả gốc lẫn lãi là bao nhiêu? Biết rằng ông Đức không rút cả gốc lẫn lãi trong các định kỳ trước đó và nếu rút trước kỳ hạn thì ngân hàng trả lãi suất theo loại không kỳ hạn 0,00027% trên một ngày. (Một tháng tính 30 ngày). A 606.627.000 đồng. B 623.613.000 đồng. C 606.775.000 đồng. D 611.764.000 đồng. + Gọi S là tập hợp tất cả các số thực m sao cho đồ thị hàm số y = |2×4 − 4(m − 1)x2 − m2 + 3m − 2| có đúng 5 cực trị. Số phần tử m ∈ [−2021;2021] ∩ S có giá trị nguyên là? + Giả sử tồn tại số thực m sao cho phương trình ex − e−x = 2cosmx có 2021 nghiệm thực phân biệt. Số nghiệm phân biệt của phương trình ex + e−x = 2cosmx+4 là?