Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 11 môn Toán THPT QG 2019 2020 lần 1 trường Yên Phong 1 Bắc Ninh

Nội dung Đề thi thử lớp 11 môn Toán THPT QG 2019 2020 lần 1 trường Yên Phong 1 Bắc Ninh Bản PDF Nhằm giúp học sinh khối 11 sớm được rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia năm 2021, vừa qua, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi thử THPT Quốc gia môn Toán lớp 11 năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán lớp 11 THPT QG năm học 2019 – 2020 lần 1 trường THPT Yên Phong số 1 – Bắc Ninh mã đề 668 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung kiểm tra thuộc chương trình Toán lớp 10 và Toán lớp 11 học sinh đã được học, đề thi có đáp án. Trích dẫn đề thi thử Toán lớp 11 THPT QG 2019 – 2020 lần 1 trường Yên Phong 1 – Bắc Ninh : + Cho phép thử T với không gian mẫu Ω và A, B là hai biến cố liên quan đến T. Mệnh đề nào sau đây sai? A. Nếu A và B xung khắc thì P(A ∪ B) = P(A) + P(B). B. Nếu A và B đối nhau thì A và B xung khắc. C. Nếu A và B độc lập thì P(A.B) = P(A).P(B) D. Nếu A và B xung khắc thì A và B đối nhau. + Năm nay, bạn Minh đang học lớp 11. Hết học kỳ 1, bạn đạt kết quả học tập tốt, nên đầu tháng 1/2020, bố bạn quyết định mang số tiền dành dụm 100 triệu đồng mang ra ngân hàng gửi tiết kiệm để chuẩn bị sang năm cho bạn đi học Đại học Biết rằng, tiền gửi ngân hàng được tính theo hình thức lãi kép, với lãi suất không kỳ hạn là 0,6%/tháng (lãi được nhập vào gốc sau mỗi tháng). Hỏi nếu hết tháng 8/2021, bố bạn đi rút tiền ngân hàng, sẽ rút được bao nhiêu tiền? (kết quả làm tròn đến hàng trăm nghìn). A. 110.900.000 đồng. B. 112.000.000 đồng. C. 113.300.000 đồng. D. 112.700.000 đồng. [ads] + Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AB, AD. Gọi d là giao tuyến của hai mặt phẳng (BCD) và (CMN). Chọn khẳng định sai? A. MN, BD, d là ba đường thẳng đồng quy. B. d // MN. C. d // BD. D. d đi qua C. + Đề kiểm tra trắc nghiệm môn Toán lớp 11 gồm 25 câu, mỗi câu có bốn phương án trả lời trong đó có duy nhất một phương án đúng. Trả lời đúng mỗi câu được 0.4 điểm, trả lời sai không có điểm cho câu đó. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời cho mỗi câu hỏi. Biết rằng có 3 câu bạn đó đã chắc chắn đã loại được một phương án sai. Xác suất để bạn đó được 2 điểm gần nhất với số nào sau đây? + Trong các khẳng định sau, hãy chọn khẳng định đúng? A. Trong không gian, hai đường thẳng cùng cắt một đường thẳng khác thì cắt nhau. B. Trong không gian, hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. C. Trong không gian, hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. D. Trong không gian, hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền - Hải Phòng lần 1
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 mã đề 134 gồm 05 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 28 tháng 12 năm 2018 nhằm trang bị từ sớm cho các em học sinh khối 11 những kiến thức về kỳ thi THPT Quốc gia môn Toán để các em làm quen, nắm bắt, xác định hướng học tập phù hợp … đề thi có đáp án các mã đề 134, 245, 356, 467, 578, 689, 790, 801. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 : + Trong các khẳng định sau , khẳng định nào đúng ? A. Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử đó. B. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, mặc dù không biết tập hợp tất cả các kết quả có thể có của phép thử đó. C. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, khi biết tập hợp tất cả các kết quả có thể có của phép thử đó. D. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AC, N là điểm thuộc cạnh AD sao cho AN = 2ND. O là một điểm thuộc miền trong của tam giác BCD. Khẳng định nào sau đây đúng? A. Mặt phẳng (OMN) chứa đường thẳng CD. B. Mặt phẳng (OMN) đi qua điểm A. C. Mặt phẳng (OMN) chứa đường thẳng AB. D. Mặt phẳng (OMN) đi qua giao điểm của hai đường thẳng MN và CD. + Trong kỳ thi THPT Quốc Gia môn Toán năm 2019, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 vị trí khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.
Đề khảo sát lần 2 Toán 11 năm 2018 - 2019 trường Nguyễn Đăng Đạo - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em đề khảo sát lần 2 Toán 11 năm học 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh, đề có mã 114 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi nhằm thúc đẩy học sinh khối 11 của trường không ngừng trau dồi kiến thức và kỹ năng giải toán, đề thi có đáp án. Trích dẫn đề khảo sát lần 2 Toán 11 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong các mênh đề sau, mệnh đề nào đúng? A. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau. B. Hai đường thẳng chéo nhau thì không có điểm chung. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng phân biệt không song song thì chéo nhau. [ads] + Từ độ cao 10 mét, người ta thả một quả bóng xuống mặt đất. Biết rằng sau mỗi lần chạm mặt đất quả bóng sẽ nảy lên một độ cao bằng 1/2 độ cao lần nảy lên trước đó và lần đầu tiên chạm đất quả bóng nảy lên độ cao là 8 mét. Tính quãng đường quả bóng đi được kể từ lúc thả đến thời điểm quả bóng chạm đất lần thứ 10. + Cho hình chóp S.ABCD đáy là hình thang có AD // BC. M là điểm di động trong hình thang ABCD. Qua M kẻ các đường thẳng song song SA và SB lần lượt cắt các mặt (SBC) và (SAD) tại N và P. Cho SA = a, SB = b. Tìm giá trị lớn nhất của biểu thức T = MN^2.MP.
Đề khảo sát năng lực Toán 11 năm 2018 - 2019 trường Triệu Quang Phục - Hưng Yên lần 2
Đề khảo sát năng lực Toán 11 năm 2018 – 2019 trường Triệu Quang Phục – Hưng Yên lần 2 mã đề 212 được biên soạn nhằm đánh giá chất lượng Toán 11 thường xuyên để giúp học sinh củng cố, nâng cao kiến thức – kỹ năng giải toán, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành bài thi này, kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2018. Trích dẫn đề khảo sát năng lực Toán 11 năm 2018 – 2019 trường Triệu Quang Phục – Hưng Yên lần 2 : + Trong kì thi đánh giá năng lực lần I năm học 2018 – 2019 của trường THPT Triệu Quang Phục, kết quả có 86 thí sinh đạt điểm giỏi môn Toán, 61 thí sinh đạt điểm giỏi môn Vật lí và 76 thí sinh đạt điểm giỏi môn Hóa học, 45 thí sinh đạt điểm giỏi cả hai môn Toán và Vật lí, 21 thí sinh đạt điểm giỏi cả hai môn Vật lí và Hóa học, 32 thí sinh đạt điểm giỏi cả hai môn Toán và Hóa học, 18 thí sinh đạt điểm giỏi cả ba môn Toán, Vật lí và Hóa học. Có 782 thí sinh mà cả ba môn đều không đạt điểm giỏi. Hỏi trường THPT Triệu Quang Phục có bao nhiêu thí sinh tham dự kì thi đánh giá năng lực lần I năm học 2018-2019? [ads] + Đầu tiết học, cô giáo kiểm tra bài cũ bằng cách gọi lần lượt từng người từ đầu danh sách lớp lên bảng trả lời câu hỏi. Biết rằng các học sinh đầu tiên trong danh sách lớp là An, Bình, Cường với xác suất thuộc bài lần lượt là 0,9; 0,7 và 0,8. Cô giáo sẽ dừng kiểm tra sau khi đã có 2 học sinh thuộc bài. Tính xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên. + Một đoàn tình nguyện, đến một trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi. Trong 20 suất quà đó gồm 7 chiếc áo mùa đông, 9 thùng sữa tươi và 4 chiếc cặp sách. Tất cả các suất quà đều có giá trị tương đương nhau. Biết rằng mỗi em được nhận 2 suất quà khác loại (ví dụ: 1 chiếc áo và 1 thùng sữa tươi). Trong số các em được nhận quà có hai em Việt và Nam. Tính xác suất để hai em Việt và Nam đó nhận được suất quà giống nhau?
Đề thi khảo sát Toán 11 lần 2 năm 2018 - 2019 trường THPT Nhã Nam - Bắc Giang
Đề thi khảo sát Toán 11 lần 2 năm 2018 – 2019 trường THPT Nhã Nam – Bắc Giang gồm 4 trang với 25 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, yêu cầu học sinh hoàn thành bài làm trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi khảo sát Toán 11 lần 2 năm 2018 – 2019 trường THPT Nhã Nam – Bắc Giang : + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tam giác MNE. B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. + Cho hình chóp S.ABCD có đáy là hình thang ABCD (AB//CD). Khẳng định nào sau đây sai? A. Hình chóp S.ABCD có 4 mặt bên. B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD). C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (I là giao điểm của AD và BC). D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Gọi E là giao điểm của SO và (MNK). Hãy chọn cách xác định điểm E đúng nhất? A. E là giao điểm của SO với KH. B. E là giao điểm của SO với KN. C. E là giao điểm của SO với KM. D. E là giao điểm của SO với MN.