Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Cần Thơ

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 22 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE, CF cắt nhau tại trực tâm H. Gọi M là trung điểm của BC. Đường thẳng AM và AH cắt đường tròn (O) lần lượt tại các điểm L, K (L, K khác A). Đường tròn đường kính AH cắt đường tròn (O) tại điểm T (T khác A). 4.1. Hai tiếp tuyến tại T và tại K của đường tròn (O) cắt nhau tại điểm J. Chứng minh rằng J thuộc đường thẳng BC và J là tâm đường tròn ngoại tiếp tam giác HKT. 4.2. Gọi P là giao điểm của EF và BC, X là giao điểm của HP và KL. Chứng minh rằng hai đường tròn ngoại tiếp tam giác HTX và tam giác TML tiếp xúc nhau. + Tìm tất cả các bộ (p, q, r, n) với p, q, r là các số nguyên tố và n là số tự nhiên sao cho p2 = q2 + rn. + Cho tập hợp S = {1; 2; 3; …; 2024}. Gọi A là tập con gồm k phần tử của tập S sao cho trong A luôn tồn tại ba phần tử x, y, z thỏa x = a + b, y = b + c, z = c + a với a, b, c là các phần tử đôi một khác nhau thuộc S. Tìm giá trị nhỏ nhất của k.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Bình Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 22 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán lớp 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho biểu thức: (x3 − x − 2)^2022. Tính tổng S của các hệ số của x^(2k + 1) với k nguyên dương trong khai triển biểu thức trên. + Tìm tất cả các số nguyên dương có 100 chữ số thỏa mãn điều kiện tất cả các chữ số của nó đều là lẻ và hiệu của hai chữ số liên tiếp của số đó bằng 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn tâm O. Trên đoạn OA lấy điểm J không trùng với A và O, đường thẳng qua J vuông góc với OA cắt các đường thẳng AB, AC, BC lần lượt tại M, N, Q. Các đường thẳng BN và CM cắt nhau tại K, đường thẳng AK cắt BC tại P. Gọi I là trung điểm BC. 1. Chứng minh tứ giác MNIP nội tiếp. 2. Gọi L là trực tâm của tam giác ABC, H là trực tâm của tam giác AMN. Chứng minh ba điểm H, K, L thẳng hàng.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Bình Dương
Nội dung Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Năm ngày 20 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho dãy số (an) được xác định bởi a1 = a > 1và a_n+1 a) Tìm giới hạn của dãy số (an). b) Với n thuộc N*, đặt Sn = ak. Hãy tìm giới hạn của dãy số (Sn). + Trong mặt phẳng, cho 2023 điểm sao cho không có 3 điểm nào thẳng hàng. Hỏi: a) Có ít nhất bao nhiêu tam giác không cân được tạo thành. b) Chứng minh rằng có thể chọn ra một tập con gồm 45 điểm sao cho trong đó không có 3 điểm nào tạo thành một tam giác đều. + Cho tam giác ABC nhọn nội tiếp đường tròn (O) có B, C cố định và A thay đổi trên (O). D là trung điểm BC. BE, CF là các đường cao của tam giác ABC. Hai đường tròn (DBF) và (DCE) cắt nhau tại điểm thứ hai là K. a) Chứng minh rằng K luôn thuộc đường tròn cố định. b) Lấy T trên (O) sao cho KT vuông góc BC và A, T khác phía với BC. Các đường thẳng AB, BT cắt lại đường tròn (AKT) lần lượt tại M, N. Gọi I là trung điểm MN. Chứng minh rằng đường tròn (ATI) luôn đi qua điểm cố định.
Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 19 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán lớp 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hải Dương : + Một nhóm 15 học sinh gồm 6 học sinh lớp A, 5 học sinh lớp B, 4 học sinh lớp C. Lấy ngẫu nhiên 7 học sinh trong nhóm trên. Tính xác suất để 7 học sinh lấy ra có đủ cả 3 lớp và số học sinh lớp B bằng số học sinh lớp C. + Cho tam giác ABC vuông cân tại A có trọng tâm G; gọi E, H lần lượt là trung điểm của AB, BC. D là điểm đối xứng với H qua A, I là giao điểm của đường thẳng AB và đường thẳng CD. Biết D(-1;-1), đường thẳng IG có phương trình 6 3 7 0 x y và điểm E có hoành độ bằng 1. Tìm tọa độ các đỉnh của tam giác ABC. + Cho hình lập phương 1 1 1 1 ABCD ABC D có cạnh bằng a. Đường thẳng d đi qua D1 và tâm O của hình vuông BCC B1 1. Đoạn thẳng MN có trung điểm K thuộc đường thẳng d, biết M thuộc mặt phẳng (BCC B1 1), N thuộc mặt phẳng (ABCD). Tìm giá trị nhỏ nhất của độ dài đoạn thẳng MN.
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Cho tam giác ABC nội tiếp đường tròn (O) với AB AC. Trung tuyến xuất phát từ đỉnh A và đường phân giác trong của góc A cắt BC lần lượt tại M và N. Đường thẳng qua N và vuông góc với AN cắt đường thẳng AB, AM lần lượt tại P và Q; đường thẳng qua P và vuông góc với AB cắt đường thẳng AN tại R. Chứng minh QR vuông góc với BC. + Tìm hiểu kết quả học tập ở một lớp học người ta thấy: Hơn 7 10 số học sinh đạt điểm giỏi ở môn Toán cũng đồng thời đạt điểm giỏi ở môn Ngữ văn. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Ngữ văn cũng đồng thời đạt điểm giỏi ở môn Lịch sử. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Lịch sử cũng đồng thời đạt điểm giỏi ở môn Tiếng Anh. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Tiếng Anh cũng đồng thời đạt điểm giỏi ở môn Toán. Chứng minh trong lớp có ít nhất một học sinh đạt điểm giỏi ở cả bốn môn Toán, Ngữ văn, Lịch sử, Tiếng Anh. + Cho hàm số 3 2 f x m x m x x 1 1 3 6 5 và 2 0 max 1 f x f với m là tham số thực. Tìm giá trị nhỏ nhất của hàm số f x trên đoạn −2 0.