Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT Hà Tĩnh

Nội dung Đề chọn đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT Hà Tĩnh Bản PDF Ngày 22 – 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 02 bài thi với tổng cộng 07 bài toán, thời gian làm bài mỗi bài thi là 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Cho phương trình x^n = x + 1. Chứng minh rằng với mỗi n thuộc N và n >= 2, phương trình có nghiệm dương duy nhất, ký hiệu là xn. a. Tính giới hạn của dãy số (un) với un = n(xn – 1). b. Tìm số thực k sao cho dãy số vn = n^k(xn+1 – xn) có giới hạn hữu hạn khác 0. + Cho tam giác nhọn ABC có AB < AC < BC và nội tiếp đường tròn (O;R). Đường thẳng d thay đổi nhưng luôn vuông góc với đoạn thẳng OA và cắt cạnh AB, AC lần lượt tại M, N. Gọi K là giao điểm của đường thẳng BN và CM, P là giao điểm của đường thẳng AK và BC, I là trung điểm của BC. a. Chứng minh tứ giác MNIP nội tiếp được trong một đường tròn. b. Gọi H là trực tâm tam giác AMN. Chứng minh rằng đường thẳng HK luôn đi qua một điểm cố định khi đường thẳng d thay đổi. + Cho bảng vuông n x n ô vuông (n > 2) với các ô vuông được tô bằng hai màu đen hoặc trắng (mỗi ô chỉ tô bởi một màu). Biết rằng mỗi bước, ta chỉ thay đổi màu của toàn bộ các ô trong một hàng hoặc một cột (ô trắng thành đen và ô đen thành trắng). a. Giả sử trong bảng có đúng một ô được tô đen. Hỏi sau một số bước đổi màu các hàng hoặc cột nào đó thì bảng toàn ô trắng được hay không? b. Có tất cả bao nhiêu cấu hình ban đầu sao cho sau hữu hạn bước đổi màu hàng hoặc cột thì bảng gồm toàn ô trắng? (Ví dụ: Cấu hình H1 là một cấu hình thỏa mãn với n = 3).

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp tỉnh Toán 12 năm 2018 - 2019 sở GD và ĐT Bình Thuận (Vòng 2)
Đề thi chọn HSG cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Bình Thuận (Vòng 2) gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 19 tháng 10 năm 2018 nhằm thành lập đội tuyển học sinh giỏi Toán 12 dự thi Quốc gia, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Bình Thuận (Vòng 2) : + Cho tam giác ABC có AB < AC và nội tiếp đường tròn (O). Phân giác trong góc BAC cắt (O) tại điểm D khác A, lấy E đối xứng B qua AD, đường thẳng BE cắt (O) tại F khác B. Lấy điểm G di chuyển trên cạnh AC (G khác A, C), đường thẳng BG cắt (O) tại H khác B. Đường thẳng qua C song song AH cắt FD tại I . Đường tròn ngoại tiếp tam giác BCG cắt EI tại hai điểm phân biệt K, L. Chứng minh rằng đường trung trực đoạn thẳng KL luôn đi qua một điểm cố định. [ads] + Cho 2018 tập hợp mà mỗi tập chứa đúng 45 phần tử. Biết rằng hai tập tùy ý trong các tập này đều có đúng một phần tử chung. Chứng minh rằng tồn tại phần tử thuộc tất cả 2018 tập hợp đã cho.
Đề thi chọn HSG cấp tỉnh Toán 12 năm 2018 - 2019 sở GD và ĐT Bình Thuận (Vòng 1)
Đề thi chọn HSG cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Bình Thuận (Vòng 1) gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 180 phút , kỳ thi được diễn ra vào ngày 18 tháng 10 năm 2018, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Bình Thuận (Vòng 1) : + Cho tam giác ABC nhọn có AB < AC và hai đường cao BE, CF cắt nhau tại H. Các đường tròn (O1), (O2) cùng đi qua A và theo thứ tự tiếp xúc với BC tại B, C. Gọi D là giao điểm thứ hai của (O1) và (O2). a) Chứng minh đường thẳng AD đi qua trung điểm của cạnh BC. b) Chứng minh ba đường thẳng EF, BC, HD đồng quy. [ads] + Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x^3 – 3×2 – 3mx + m có hai điểm cực trị nằm khác phía đối với trục hoành. + Cho x và y là các số thực thỏa mãn 2x ≥ y > 0. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (x^2 – xy + y^2)/(x^2 + xy + y^2).
Đề thi chọn HSG Toán 12 cấp tỉnh năm 2018 - 2019 sở GD và ĐT Gia Lai
giới thiệu đến thầy, cô và các em học sinh lớp 12 nội dung đề thi chọn HSG Toán 12 cấp tỉnh năm 2018 – 2019 sở GD và ĐT Gia Lai (Bảng B), đề gồm 8 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán 12 cấp tỉnh năm 2018 – 2019 sở GD và ĐT Gia Lai : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, chiều cao h không đổi. Gọi M, N lần lượt là hai điểm di động trên hai cạnh BC, CD sao cho góc MAN = 45 độ. Đặt BM = x. Tìm x theo a sao cho thể tích của khối chóp S.AMN đạt giá trị nhỏ nhất. + Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I có phương trình (x − 1)^2 + (y + 1)^2 = 5, tam giác ABC nội tiếp đường tròn và đường phân giác trong góc A có phương trình x − y − 1 = 0. Biết rằng hai điểm A và I cách đều đường thẳng BC và điểm A có hoành độ dương. Tính diện tích tam giác ABC. [ads] + Một quả bóng cao su được thả rơi từ độ cao h = 18m. Sau mỗi lần chạm đất, quả bóng lại nảy lên cao bằng 3/4 độ cao của lần rơi ngay trước đó. Giả sử quả bóng khi rơi và nảy đều theo phương thẳng đứng. Tính tổng độ dài đoạn đường quả bóng đã di chuyển từ lúc được thả đến lúc quả bóng không nảy nữa.
Đề thi thử chọn HSG Toán 12 năm 2018 - 2019 cụm Tân Yên - Bắc Giang
Đề thi thử chọn HSG Toán 12 năm 2018 – 2019 cụm Tân Yên – Bắc Giang gồm 6 trang, đề gồm 40 câu hỏi trắc nghiệm và 3 bài toán tự luận, yêu cầu học sinh hoàn thành bài làm trong thời gian 120 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018. Trích dẫn đề thi thử chọn HSG Toán 12 năm 2018 – 2019 cụm Tân Yên – Bắc Giang : + Anh Đua muốn tiết kiệm tiền để sắm Iphone-X nên mỗi tháng đều đặn gửi vào ngân hàng một khoản tiền a đồng theo hình thức lãi kép với lãi suất 0,7 % mỗi tháng. Biết rằng sau 2 năm anh Đua có số tiền trong ngân hàng là 40 triệu đồng. Hỏi số tiền a gần với số tiền nào nhất trong các số sau? [ads] + Cho hình vuông ABCD và ABEF cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc với nhau. Gọi H là điểm chia EH = 1/3.ED và S là điểm trên tia đối của HB sao cho SH = 1/3.BH. Thể tích khối đa diện ABCDSEF là? + Cho (H) là hình phẳng giới hạn bởi parabol y = 2x^2 – 1 và nửa đường tròn có phương trình y = √2 – x^2 (với -√2 ≤ x ≤ 2) (phần tô đậm trong hình vẽ). Diện tích của (H) bằng?