Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Diệp Tuân

Tài liệu gồm 420 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit (Toán 12 phần Giải tích chương 2). CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. 1. LŨY THỪA. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Biến đổi biểu thức liên quan và so sánh 2. Dạng 2. Rút gọn biểu thức 10. C. Câu hỏi trắc nghiệm 17. Dạng 1. Lũy thừa với số mũ hữu tỉ 18. Dạng 2. Lũy thừa với số mũ vô tỉ 26. 2. HÀM SỐ LŨY THỪA. A. Lý thuyết 31. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 32. Dạng 1. Tập xác định của hàm số lũy thừa 32. Dạng 2. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 35. + Loại 1. Tính đạo hàm của hàm số lũy thừa 35. + Loại 2. Tính giá trị lớn nhất và giá trị lớn nhất của hàm số lũy thừa 36. Dạng 3. Tính chất đồ thị của hàm số lũy thừa 41. C. Câu hỏi trắc nghiệm trong các đề thi đại học 46. 3. LÔGARIT. A. Lý thuyết 57. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 58. Dạng 1. Tập xác định của hàm số lôgarit 58. Dạng 2. Rút gọn biểu thức 66. Dạng 3. Tính giá trị của biểu thức, chứng minh đẳng thức 71. Dạng 4. Khái niệm, tính chất và so sánh 81. Dạng 5. Biểu diễn một lôgarit theo một lôgarit khác cơ số cho trước 90. 4. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. A. Lý thuyết 102. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 103. Dạng 1. Tập xác định của hàm số lôgarit 103. Dạng 2. Tính giá trị của biểu thức khi biết một điều kiện 115. Dạng 3. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 118. Dạng 4. Sự đồng biến và nghịch biến của hàm số mũ và hàm số lôgarit 157. Dạng 5. Tìm cực trị của hàm số mũ và hàm số lôgarit 168. Dạng 6. Tính chất và đồ thị của hàm số mũ và hàm số lôgarit 170. Dạng 7. Bài toán thực tế, lãi suất 184. + Loại 1. Bài toán lãi kép 184. + Loại 2. Bài toán gửi tiết kiệm hàng tháng 192. + Loại 3. Bài toán trả góp hàng tháng 195. + Loại 4. Bài toán tăng trưởng 198. 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. I. PHƯƠNG TRÌNH MŨ. A. Lý thuyết 203. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 203. Dạng 1. Phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 203. Dạng 2. Phương pháp đặt ẩn phụ 211. Dạng 3. Phương pháp Lôgarit hóa 222. Dạng 4. Phương pháp tích 229. Dạng 5. Phương pháp đặt ẩn phụ không hoàn toàn, phương pháp đồ thị 232. Dạng 6. Phương pháp sử dụng tính đơn điệu của hàm số 235. Dạng 7. Phương trình chứa tham số m 235. + Loại 1. Tìm điều kiện của m để phương trình có nghiệm 241. + Loại 2. Tìm điều kiện của m để phương trình có n nghiệm trên [a;b] 246. + Loại 3. Tìm điều kiện của m để phương trình có nghiệm thỏa mãn điều kiện 253. II. PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 263. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 263. Dạng 1. Phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 263. Dạng 2. Phương pháp đặt ẩn phụ 289. Dạng 3. Phương pháp mũ hóa Lôgarit 304. Dạng 4. Phương pháp tích 311. Dạng 5. Phương pháp đồ thị và hàm đặt trưng 315. Dạng 6. Phương trình chứa tham số m 321. 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. I. BẤT PHƯƠNG TRÌNH MŨ. A. Lý thuyết 344. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 344. Dạng 1. Bất phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 344. Dạng 2. Phương pháp đặt ẩn phụ 356. Dạng 3. Phương pháp Lôgarit hóa và bất phương trình tích 365. Dạng 4. Phương pháp sử dụng tính đơn điệu của hàm số 368. Dạng 5. Bất phương trình chứa tham số m 370. II. BẤT PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 382. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 382. Dạng 1. Bất phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 382. Dạng 2. Phương pháp đặt ẩn phụ 406. Dạng 3. Phương pháp biến đổi về phương trình tích 414.

Nguồn: toanmath.com

Đọc Sách

Bài tập khối tròn xoay chọn lọc - Trần Sĩ Tùng
Tài liệu gồm 12 trang tuyển chọn các bài tập khối tròn xoay có đáp án, tài liệu do thầy Trần Sĩ Tùng biên soạn. I. Mặt cầu – Khối cầu 1. Định nghĩa 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Vị trí tương đối giữa mặt cầu và đường thẳng 4. Mặt cầu ngoại tiếp – nội tiếp 5. Xác định tâm mặt cầu ngoại tiếp khối đa diện [ads] + Cách 1: Nếu (n – 2) đỉnh của đa diện nhìn hai đỉnh còn lại dưới một góc vuông thì tâm của mặt cầu là trung điểm của đoạn thẳng nối hai đỉnh đó + Cách 2: Để xác định tâm của mặt cầu ngoại tiếp hình chóp – Xác định trục D của đáy (D là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy) – Xác định mặt phẳng trung trực (P) của một cạnh bên – Giao điểm của (P) và D là tâm của mặt cầu ngoại tiếp hình chóp II. Diện tích – Thể tích
Bài tập Mặt cầu - Khối cầu - Nguyễn Đăng Dũng
Tài liệu gồm 9 trang hướng dẫn phương pháp giải các dạng toán mặt cầu, khối cầu và các ví dụ minh họa có lời giải chi tiết. Phương pháp: + Muốn chứng minh nhiều điểm cùng thuộc một mặt cầu ta chứng minh các điểm đó cùng cách đều một điểm O cố định một khoảng R > 0 không đổi. + Muốn chứng minh một đường thẳng D tiếp xúc với maột mặt cầu S (O;R), ta chứng minh d (O;D) = R. + Muốn chứng minh một mặt phẳng (P) tiếp xúc với một mặt cầu S (O;R), ta chứng minh d (O;(P)) = R. + Tập hợp các điểm M trong không gian nhìn đoạn thẳng AB cố định dưới một góc vuông là mặt cầu đường kính AB. [ads]
Bài tập chọn lọc tọa độ không gian Oxyz - Lê Minh Tâm
Tài liệu gồm 636 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển tập các bài tập chọn lọc chuyên đề phương pháp tọa độ trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 rèn luyện khi học chương trình môn Toán 12 phần Hình học chương 3. MỤC LỤC : PHẦN ĐỀ BÀI. Chủ đề 1. Tọa độ không gian Oxyz Trang 2. Chủ đề 2. Phương trình mặt cầu Trang 21. Chủ đề 3. Phương trình mặt phẳng Trang 57. Chủ đề 4. Phương trình đường thẳng Trang 85. Chủ đề 5. Vị trí tương đối Trang 141. PHẦN ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT. Chủ đề 1. Tọa độ không gian Oxyz Trang 2. Chủ đề 2. Phương trình mặt cầu Trang 68. Chủ đề 3. Phương trình mặt phẳng Trang 174. Chủ đề 4. Phương trình đường thẳng Trang 261. Chủ đề 5. Vị trí tương đối Trang 434.
Bài tập trắc nghiệm hình học Oxyz vận dụng cao
Tài liệu gồm 61 trang, tuyển chọn các bài tập trắc nghiệm hình học Oxyz vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3: Phương Pháp Tọa Độ Trong Không Gian. Phần 1. Các bài toán cơ bản ở mức vận dụng. Phần 2. Cực trị trong hình học Oxyz. Phần 3. Các bài toán về mặt cầu. Phần 4. Bài toán cực trị sử dụng tâm tỷ cự. Phần 5. Bài toán hỏi số mặt phẳng, số mặt cầu. Phần 6. Bài toán quỹ tích.