Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán

Nội dung 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán Bản PDF - Nội dung bài viết Thông tin về sản phẩm 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán Thông tin về sản phẩm 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán Sản phẩm này là tài liệu học tập chất lượng cao, được biên soạn bởi đội ngũ giáo viên tận tâm từ Nhóm Word Và Biên Soạn Tài Liệu Toán. Với tổng cộng 1368 trang, tài liệu này hướng đến mục tiêu giúp học sinh khối 12 ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi tốt nghiệp THPT môn Toán năm 2020. Nội dung của tài liệu tập trung vào 50 dạng toán đa dạng và phong phú, dựa trên đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 do Bộ Giáo dục và Đào tạo công bố. Các dạng toán bao gồm cả các chủ đề quan trọng như hoán vị, tổ hợp, cấp số cộng và cấp số nhân, giải bất phương trình mũ và logarit, tính thể tích các hình học đặc biệt như khối lăng trụ, khối nón, trụ, cầu, hàm số, nguyên hàm, giá trị lớn nhất - giá trị nhỏ nhất của hàm số, xác suất, và nhiều chủ đề khác. Tài liệu không chỉ cung cấp bài tập mẫu mà còn lời giải chi tiết và hướng dẫn cách giải, giúp học sinh nắm vững kiến thức và kỹ năng cần thiết cho kỳ thi tốt nghiệp. Với sự tổng hợp thông tin cẩn thận và cách trình bày logic, tài liệu giúp học sinh nắm bắt nhanh chóng và hiệu quả các kiến thức quan trọng. Tóm lại, tài liệu 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán là nguồn tài liệu hữu ích, đáng tin cậy để học sinh khối 12 tự tin chuẩn bị cho kỳ thi quan trọng của mình. Hãy sử dụng tài liệu này để rèn luyện và nắm vững kiến thức, giúp bạn đạt được kết quả cao trong kỳ thi tốt nghiệp THPT.

Nguồn: sytu.vn

Đọc Sách

Tư duy giải nhanh các câu hỏi khó trong đề chính thức THPTQG 2018 môn Toán
Tài liệu gồm 6 trang hướng dẫn tư duy giải nhanh các câu hỏi khó trong đề chính thức THPTQG 2018 môn Toán, trong đó bao gồm 16 câu hỏi, từ câu 35 đến câu 50 thuộc mã đề 101, trong 16 câu hỏi này có 1 câu hỏi vận dụng thấp và 15 câu hỏi vận dụng cao. Lời giải được trình bày ngắn gọn, mỗi câu không quá 3 bước tính toán. Thông qua lời giải này, chúng ta có thể nhận thấy “ý đồ” ra đề của Bộ GD&ĐT nhằm kiểm tra quá trình tư duy toán học của học sinh, điều này có lợi cho các học sinh nắm kiến thức sâu sắc và có tư duy tốt, nhưng lại gây khó khăn cho các học sinh học theo hình thức thuộc bài và thiên về tính toán.
Tổng ôn toán vận dụng - vận dụng cao ôn thi THPTQG môn Toán - Lục Trí Tuyên
Tài liệu gồm 60 trang được biên soạn bởi thầy Lục Trí Tuyên tuyển tập 142 bài toán trắc nghiệm mức độ vận dụng và vận dụng cao ôn thi THPT Quốc gia môn Toán, trong đó gồm 35 bài toán thuộc chương trình Toán 11 và 107 bài toán nằm trong chương trình Toán 12, các bài toán đều có đáp án, được phân tích và giải chi tiết.
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 2 Hình học)
Tài liệu gồm 95 trang trình bày lý thuyết cần nhớ, phân dạng toán có hướng dẫn giải và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Hình học ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp, nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu : + Chuyên đề 5. Khối đa diện – Thể tích khối đa diện + Chuyên đề 6. Mặt nón – Mặt trụ và Mặt cầu + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz [ads] Xem thêm : + Chuyên đề Toán 12 ôn thi THPTQG – Lư Sĩ Pháp (Tập 1: Giải tích) + Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)
Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp