Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử môn Toán 2018 THPT Quốc gia - tạp chí Toán Học Tuổi Trẻ lần 6

Đề thi thử môn Toán 2018 THPT Quốc gia – tạp chí Toán Học Tuổi Trẻ lần 6 được xuất bản trên báo THTT số 489 ra ngày 12/03/2018, đề được biên soạn bởi thầy Phạm Trọng Thư, giáo viên trường THPT chuyên Nguyễn Quang Diêu – Đồng Tháp, đề gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút. Đề thi thử Toán trên báo THTT luôn được đánh giá là hay và khó, chứa nhiều các câu hỏi phân loại và dạng bài mới, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán 2018 THTT lần 6 : + Mặt tiền của một ngôi nhà biệt thự có 8 cây cột hình trụ tròn, tất cả đều có chiều cao bằng 4,2m. Trong số các cây đó có 2 cây cột trước đại sảnh đường kính bằng 40cm, 6 cột còn lại phân bố đều hai bên đại sảnh và chúng đều có đường kính bằng 26cm. Chủ nhà thuê nhân công để sơn các cây cột bằng loại sơn giả đá, biết giá thuê là 380.000đ / 1m2 (kể cả vật liệu sơn và phần thi công). Hỏi người chủ phải chi ít nhất bao nhiêu tiền để sơn hết các cây cột nhà đó (đơn vị đồng)? (lấy π ≈ 3.14159) [ads] + Kết quả (b, c)  của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là số chấm xuất hiện ở lần gieo thứ nhất, c là số chấm xuất hiện ở lần gieo thứ hai được thay vào phương trình bậc hai x^2 + bx + c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm. + Cho tam giác ABC vuông tại A, BC = a, AC = b, AB = c, b < c. Khi quay tam giác vuông ABC một vòng quanh cạnh BC, quanh cạnh AC, quanh cạnh AB, ta được các hình có diện tích toàn phần theo thứ tự bằng Sa, Sb, Sc. Khẳng định nào sau đây là đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 111). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong không gian cho hệ trục Oxyz; cho A(1;1;2), B(-4;0;11), C(0;–21;0). Có bao nhiêu điểm D sao cho A, B, C, D là bốn đỉnh của một hình bình hành. A. Có vô số điểm D C. Có 2 điểm D B. Có duy nhất một điểm D D. Có 3 điểm D. + Cho mặt cầu S(O;9). Một hình nón có đỉnh và đường tròn đáy nằm trên mặt cầu S. Khi thể tích của hình nón lớn nhất, diện tích đường tròn đáy của hình nón thuộc khoảng nào dưới đây? + Trong không gian cho hệ trục Oxyz; lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c), D với a, b, c dương. Biết diện tích tam giác ABC bằng 3/2 (đvdt) và thể tích tứ diện ABCD đạt giá trị lớn nhất. Khi đó phương trình mặt phẳng (ABD) là mx + ny + pz + 1 = 0. Tính m + n + p.
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi mã đề 102 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 07 tháng 03 năm 2023. Trích dẫn đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở GD&ĐT Lạng Sơn : + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó nhận được số tiền hơn 100triệu đồng bao gồm cả gốc và lãi? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra. A. 13 năm. B. 12 năm. C. 14 năm. D. 11 năm. + Trên mặt phẳng tọa độ, cho parabol và là đường thẳng đi qua điểm. Biết 2 P y x d M 1 2 rằng diện tích hình phẳng giới hạn bởi và d P bằng. Gọi là giao điểm của và 4 3 A Bd P. Độ dài đoạn thẳng AB thuộc khoảng nào sau đây? + Cho hình lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a. Gọi ABC.ABC MN lần lượt là trung điểm các cạnh và BC BC PQ lần lượt là tâm các mặt và ABBA ACCA. Thể tích khối tứ diện MNPQ bằng?
Đề thi thử THPT Quốc gia 2023 môn Toán lần 3 trường THPT chuyên Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2022 – 2023 môn Toán lần 3 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút. Trích dẫn Đề thi thử THPT Quốc gia 2023 môn Toán lần 3 trường THPT chuyên Thái Bình : + Một chiếc hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng (các quả cầu đôi một khác nhau). Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất 1 quả màu đỏ bằng? + Cho hàm số f(x) = x3 − 2x + 1. Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị lớn nhất của hàm số g(x) = |f2(x) – 2f(x) + m| trên đoạn (-1;3] bằng 8. Tính tổng các phần tử của S. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số V1/V2.
Đề thi chuyên đề Toán 12 lần 4 năm 2022 - 2023 trường THPT Trần Phú - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chuyên đề môn Toán 12 lần 4 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài: 90 phút (không kể thời gian phát đề). Trích dẫn Đề thi chuyên đề Toán 12 lần 4 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Một thùng hình trụ có bán kính đáy bằng 2(m), bên trong thùng có chứa một lượng nước. Biết rằng khi để thùng nằm ngang thì phần bề mặt nước là một hình vuông và mặt nước cách trục của hình trụ một khoảng bằng 3 (m). Nếu để thùng thẳng đứng thì chiều cao của nước trong thùng bằng? + Trong không gian Oxyz cho mặt phẳng (P) x y z 2 2 12 0 và mặt cầu (S): 2 2 2 x y z x y z 2 4 2 5 0. Xét hai điểm M, N lần lượt thuộc (P) và (S) sao cho MN cùng phương với vectơ u = (1;1;1). Giá trị nhỏ nhất của MN bằng? + Có 30 chiếc thẻ được đánh số từ 1 đến 30. Chọn ngẫu nhiên 2 thẻ. Xác suất để chọn được ít nhất một thẻ đánh số nguyên tố bằng?