Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ thuận, một số bài toán về đại lượng tỉ lệ thuận

Nội dung Chuyên đề đại lượng tỉ lệ thuận, một số bài toán về đại lượng tỉ lệ thuận Bản PDF - Nội dung bài viết Chuyên đề đại lượng tỉ lệ thuận - Một số bài toán thú vịI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬP Chuyên đề đại lượng tỉ lệ thuận - Một số bài toán thú vị Trong tài liệu này, bạn sẽ được tiếp cận với 18 trang sách chứa lý thuyết quan trọng, các dạng toán và bài tập về đại lượng tỉ lệ thuận. Bạn sẽ tìm thấy một số bài toán hấp dẫn về đại lượng tỉ lệ thuận, kèm theo đáp án và lời giải chi tiết. Đây là tài liệu hữu ích hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, đặc biệt là phần Đại số - chương 2: Hàm số và đồ thị. Mục tiêu của tài liệu này là giúp bạn: Nắm vững định nghĩa hai đại lượng tỉ lệ thuận với nhau và thực hành với một số ví dụ cụ thể. Hiểu rõ tính chất của đại lượng tỉ lệ thuận. Áp dụng phương pháp giải các bài toán về đại lượng tỉ lệ thuận. Qua tài liệu này, bạn sẽ phát triển kỹ năng: Nhận biết hai đại lượng tỉ lệ thuận với nhau và tính hệ số tỉ lệ. Lập bảng giá trị tương ứng giữa hai đại lượng tỉ lệ thuận và xét tương quan tỉ lệ thuận giữa chúng. Giải các bài toán thú vị về đại lượng tỉ lệ thuận và bài toán chia tỉ lệ. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dưới đây là một số dạng bài toán bạn sẽ gặp trong tài liệu: Dạng 1: Xác định tương quan giữa hai đại lượng tỉ lệ thuận. Bài Toán 1: Nhận biết hai đại lượng tỉ lệ thuận với nhau và xác định hệ số tỉ lệ. Bài Toán 2: Xét tương quan tỉ lệ thuận giữa hai đại lượng dựa trên bảng giá trị tương ứng. Dạng 2: Sử dụng tính chất của tỉ lệ thuận để tìm các đại lượng. Dạng 3: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ thuận. Dạng 4: Giải các bài toán đơn giản về đại lượng tỉ lệ thuận. Dạng 5: Phân chia một số thành các phần tỉ lệ thuận với các số đã cho. Với tài liệu này, bạn sẽ dễ dàng tiếp cận và áp dụng kiến thức, kỹ năng về đại lượng tỉ lệ thuận vào thực tế. Chúc bạn học tập hiệu quả và thành công!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tập hợp các số thực Toán 7
Tài liệu gồm 34 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tập hợp các số thực trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . TẬP HỢP SỐ THỰC – SO SÁNH CÁC SỐ HỮU TỈ. – Sử dụng kí hiệu của tập hợp số: + Bạn cần nhớ: quan hệ giữa các tập hợp số. + Tập hợp các số tự nhiên kí hiệu là N. + Tập hợp các số nguyên kí hiệu là Z. + Tập hợp các số hữu tỉ kí hiệu là Q. + Tập hợp các số vô tỉ kí hiệu là I. + Tập hợp các số thực kí hiệu là R. – So sánh các số thực: + Việc so sánh các số thực được làm tương tự như so sánh các số hữu tỉ viết dưới dạng số thập phân. + Đặc biệt, với a b là hai số thực dương thì: a b a b. Dạng 2 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ THỰC. – Giá trị tuyệt đối của một số hữu tỉ x (kí hiệu là |x|) được xác định như sau: + |x| = x khi x >= 0. + |x| = -x khi x < 0. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề số vô tỉ, căn bậc hai số học Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề số vô tỉ, căn bậc hai số học trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính căn bậc hai. – Các phép toán trong tập hợp các số vô tỉ cũng có các tính chất tương tự các phép toán trong tập hợp các số hữu tỉ. – Để thực hiện phép tính có chứa căn bậc 2, ta có thể làm như sau: + Bước 1. Tính các giá trị căn bậc hai (có thể dùng định nghĩa hoặc máy tính). + Bước 2. Thực hiện đúng thứ tự phép tính. Dạng 2 . Tìm x. – Ta sử dụng các tính chất sau: + Nếu x a thì 2 x a (với a 0). + Nếu 2 x a (với a 0) thì x a hoặc x a và ngược lại. Dạng 3 . So sánh các căn bậc hai. – Sử dụng tính chất: + Với hai số dương bất kì a và b thì a b a b. + Nếu a m m b thì a b. + Nếu x y z t thì x z y t. Dạng 4 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa căn bậc hai. – Áp dụng tính chất cơ bản sau: x 0 với mọi x 0. Dấu “=” xảy ra khi x = 0. Dạng 5 . Tìm giá trị nguyên của x để biểu thức nhận giá trị nguyên. – Tìm điều kiện của x để biểu thức nhận giá trị nguyên, ta thường làm như sau: + Bước 1. Tách phần nguyên: Tách tử theo mẫu sao cho A có dạng tổng của một số nguyên và một phân số có tử số nguyên. + Bước 2. Tìm x: Vận dụng tính chất sau: m A n với m n 0. Để A nhận giá trị nguyên thì m n hay n m. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề làm quen với số thập phân vô hạn tuần hoàn Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề làm quen với số thập phân vô hạn tuần hoàn trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Nhận biết được phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn. – Viết phân số dưới dạng phân số tối giản với mẫu dương. – Phân tích mẫu số đó ra thừa số nguyên tố. – Nếu mẫu này không có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân hữu hạn. – Nếu mẫu này có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân vô hạn tuần hoàn. Dạng 2 : Nhận biết được số thập phân hữu hạn và số thập phân vô hạn tuần hoàn, xác định được chu kì của một số thập phân vô hạn tuần hoàn. Viết phân số dưới dạng số thập phân và ngược lại. – Căn cứ vào khái niệm để nhận biết số thập phân hữu hạn hay vô hạn tuần hoàn. – Xét các chữ số sau dấu phẩy để xác định chu kỳ nếu là số thập phân vô hạn tuần hoàn. – Viết phân số dưới dạng số thập phân (thực hiện phép chia lấy tử chia cho mẫu, có thể sử dụng máy tính cầm tay để hỗ trợ). – Viết số thập phân dưới dạng phân số: + Viết dưới dạng phân số thập phân rối rút gọn đến tối giản nếu là số thập phân hữu hạn. + Nếu số thập phân vô hạn tuần hoàn có chu kì bắt đầu ngay sau dấu phẩy thì ta lấy chu kì làm tử còn mẫu là một số gồm các chữ số 9 với số chữ số 9 bằng số chữ số của chu kì. + Nếu số thập phân vô hạn tuần hoàn có chu kì không bắt đầu ngay sau dấu phẩy thì ta lấy số gồm các chữ số trước chu kì và chu kì trừ đi số gồm các chữ số trước chu kì là tử, còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số trước chu kì. Dạng 3 : Làm tròn số thập phân. – Áp dụng quy ước làm tròn số và độ chính xác cho trước. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề lũy thừa của một số hữu tỉ Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa của một số hữu tỉ trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÝ THUYẾT. 1. Định nghĩa lũy thừa với số mũ tự nhiên. 2. Tích và thương của hai lũy thừa cùng cơ số. 3. Lũy thừa của lũy thừa. 4. Lũy thừa của một tích, thương. 5. Lũy thừa với số mũ nguyên âm. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính về lũy thừa. Vận dụng định nghĩa và quy tắc phép tính ở trên để giải. Dạng 2 . Tìm thành phần chưa biết. 1. Để tìm số hữu tỉ x trong cơ số của một lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng số mũ, rồi sử dụng nhận xét. 2. Để tìm số x ở số mũ của lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng cơ số, rồi sử dụng nhận xét. Dạng 3 . So sánh hai lũy thừa. Để so sánh hai lũy thừa ta có thể biến đổi đưa hai lũy thừa về cùng cơ số hoặc đưa hai lũy thừa về cùng số mũ, rồi sử dụng nhận xét. PHẦN III . BÀI TẬP TỰ LUYỆN.