Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khối đa diện và thể tích khối đa diện - Đặng Việt Đông

giới thiệu đến bạn đọc chuyên đề khối đa diện và thể tích khối đa diện (phiên bản đặc biệt) do thầy Đặng Việt Đông biên soạn, tài liệu gồm 858 trang bao gồm lý thuyết, phân dạng toán, hướng dẫn giải và bài tập trắc nghiệm có đáp án và lời giải chi tiết chủ đề khối đa diện và thể tích khối đa diện thuộc chương trình Hình học 12 chương 1, đây là nội dung quan trọng trong chương trình Toán 12 và chiếm tỉ trọng điểm số lớn trong đề thi THPT Quốc gia môn Toán. Nội dung tài liệu chuyên đề khối đa diện và thể tích khối đa diện (phiên bản đặc biệt) – Đặng Việt Đông: CHỦ ĐỀ 1 : NHẬN DẠNG KHỐI ĐA DIỆN + Dạng toán 1: Nhận dạng các khối đa diện. + Dạng toán 2: Tính chất đối xứng của khối đa diện. + Dạng toán 3: Tính chất khác của khối đa diện. + Dạng toán 4: Phân chia, lắp ghép khối đa diện. CHỦ ĐỀ 2 : THỂ TÍCH KHỐI CHÓP + Dạng toán 1: Khối chóp có một cạnh bên vuông góc với đáy. + Dạng toán 2: Khối chóp có một mặt bên vuông góc với đáy. + Dạng toán 3: Khối chóp đều. + Dạng toán 4: Các khối chóp khác. + Dạng toán 5: Sử dụng định lý tỉ số thể tích. + Dạng toán 6: Khối đa diện cắt ra từ một khối chóp. CHỦ ĐỀ 3 : THỂ TÍCH KHỐI LĂNG TRỤ + Dạng toán 1: Khối lăng trụ đứng. + Dạng toán 2: Khối lăng trụ đều. + Dạng toán 3: Khối lăng trụ xiên. + Dạng toán 5: Khối lăng trụ xiên khác. + Dạng toán 6: Khối lập phương và khối hộp chữ nhật. + Dạng toán 7: Khối lăng trụ và khối hộp khác. [ads] CHỦ ĐỀ 4 : TÍNH TOÁN VỀ ĐỘ DÀI (KHOẢNG CÁCH) – DIỆN TÍCH + Dạng toán 1: Tính toán độ dài hình học. + Dạng toán 2: Tính khoảng cách bằng phương pháp thể tích. + Dạng toán 3: Tính toán diện tích đa giác. + Dạng toán 4: Tính toán diện tích bằng phương pháp thể tích. CHỦ ĐỀ 5 : CỰC TRỊ KHỐI ĐA DIỆN + Dạng toán 1: Max-min khối chóp. + Dạng toán 2: Max-min khối lăng trụ. CHỦ ĐỀ 6 : TOÁN THỰC TẾ KHỐI ĐA DIỆN + Dạng toán: Toán thực tế khối đa diện. Những điểm mới trong tài liệu chuyên đề khối đa diện và thể tích khối đa diện (phiên bản đặc biệt) so với các tài liệu cùng chuyên mục trước đó của thầy Đặng Việt Đông đã chia sẻ trên : + Tất cả (100%) các bài tập trắc nghiệm khối đa diện và thể tích khối đa diện trong tài liệu đều có đáp án và lời giải chi tiết. + Bổ sung thêm nhiều dạng toán mới về khối đa diện và thể tích khối đa diện, nhất là các dạng toán vận dụng cao mới “phát sinh” trong kỳ thi THPT Quốc gia môn Toán năm 2018 vừa qua. + Kiến thức và các bài toán trắc nghiệm khối đa diện và thể tích khối đa diện được gắn mã số ID, sắp xếp theo thứ tự độ khó tăng dần dựa vào các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng bậc cao. + Phần bài tập và phần lời giải chi tiết được tách riêng.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khoảng cách và thể tích khối đa diện - Hoàng Văn Phiên
Tài liệu gồm 17 trang hệ thống kiến thức từ lớp 8 đến 12 và bài tập các dạng toán trong chuyên đề khoảng cách và thể tích khối đa diện. A – ÔN TẬP KIẾN THỨC 1. Một số hệ thức lượng trong tam giác vuông 2. Một số hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích 4. Quan hệ song song 5. Quan hệ vuông góc 6. Khoảng cách và góc 7. Thể tích khối đa diện [ads] B – CÁC DẠNG BÀI TẬP 1. Hình vẽ trong không gian 2. Khoảng cách trong không gian + Bài toán 1. Khoảng cách từ 1 điểm đến 1 mặt phẳng + Bài toán 2. Khoảng cách giữa hai đường thẳng chéo nhau 3. Bài toán thể tích khối đa diện + Bài toán 1. Đường cao khối đa diện + Bài toán 2. Tỉ số thể tích + Bài toán 3. Phân chia khối đa diện
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến
Tài liệu gồm 12 trang tuyển tập các công thức tính nhanh thể tích của các khối chóp thường gặp và bài tập ví dụ minh họa có giải chi tiết. Tài liệu trình bày công thức tính thể tích các dạng hình chóp sau: + Hình chóp SABC với các mặt phẳng (SAB), (SBC), (SAC) vuông góc với nhau từng đôi một, diện tích các tam giác SAB, SBC, SAC lần lượt là S1, S2, S3 + Hình chóp S.ABC có SA vuông góc với (ABC), hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, góc BSC = α, góc ASB = β + Hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh bằng a, cạnh bên bằng b + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên tạo với mặt phẳng đáy góc + Hình chóp tam giác đều S.ABC có các cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy góc β + Hình chóp tam giác đều S.ABC có các cạnh đáy bằng a, cạnh bên tạo với mặt phẳng đáy góc β [ads] + Hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, và SA = SB = SC = SD = b + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy là α + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, (SAB) = α, với α ∈ (π/4; π/2) + Hình chóp tứ giác đều S.ABCD có các cạnh bên bằng a, góc tạo bởi mặt bên và mặt đáy là α với α ∈ (0; π/2) + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt phẳng đi qua A song song với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là α + Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh a + Khối tám mặt đều cạnh a. Nối tâm của các mặt bên ta được khối lập phương Bài tập minh họa áp dụng công thức Một số công thức giải nhanh phần tỉ lệ thể tích
Bài toán cực trị hình học không gian và các khối lồng nhau - Trần Đình Cư
Tài liệu gồm 31 trang hướng dẫn phương pháp giải dạng toán cực trị hình học không gian và các khối lồng nhau kèm theo bài tập minh họa có lời giải chi tiết. Trong quá trình tìm kiếm lời giải nhiều bài toán hình học, sẽ rất có lợi nếu chúng ta xem xét các phần tử biên, phần tử giới hạn nào đó, tức là phần tử mà tại đó mỗi đại lượng hình học có thể nhận giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn như cạnh lớn nhất, cạnh nhỏ nhất của một tam giác; góc lớn nhất hoặc góc nhỏ nhất của một đa giác … Những tính chất của các phần tử biên, phần tử giới hạn nhiều khi giúp chúng ta tìm được lời giải thu gọn của bài toán. Phương pháp tiếp cận như vậy tới lời giải bài toán được gọi là nguyên tắc cực hạn. Như vậy bài toán cực trị hình học là cần thiết trong không gian, nó thường xuất hiện ở những câu hỏi khó trong phần thi trắc nghiệm THPT Quốc gia. [ads] Tóm tắt nội dung tài liệu : 1. Phương pháp Cơ sở của phương pháp cần kết hợp giữa các quan điểm tìm cực trị như sau 1. Sử dụng bất đẳng thức thông dụng 2. Bất đẳng thức cauchy cho các biến đại lượng không âm. 3. Bất đẳng thức schwartz cho các biến đại lượng tùy ý. 4. Sử dụng tính bị chặn của hàm lượng giác 5. Sử dụng đạo hàm để lập bảng biến thiên 6. Sử dụng các nguyên lý hình học cực hạn Một số ví dụ mẫu Câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết