Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Ngô Sĩ Liên - Hà Nội

Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Ngô Sĩ Liên, Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội : + Hải đăng Đa Lát là một trong những ngọn hải đăng cao nhất Việt Nam, được đặt trên đảo Đá Lát ở vị trí cực Tây Quần đảo, thuộc xã đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hòa. Ngọn hải đăng được xây dựng năm 1994, cao 42 mét, có tác dụng chỉ vị trí đảo, giúp tàu thuyền hoạt động trong vùng biển Trường Sa định hướng và xác định được vị trí của mình. Một người đi trên tàu đánh cá muốn đến ngọn hải đăng Đá Lát, người đó đứng trên mũi tàu cá và dùng giác kế đo được góc giữa mũi tàu và tia nắng chiếu từ đỉnh ngọn hải đăng đến tàu là 10°. a) Tính khoảng cách từ tàu đến chân ngọn hải đăng (làm tròn đến 1 chữ số thập phân). b) Biết cứ đi 10m thì tàu đó hao tốn hết 0,02 lít dầu. Hỏi tàu đó đi đến ngọn hải đăng Đá Lát cần tối thiểu bao nhiêu lít dầu? + Thực hiện phép tính. + Cho tam giác ABC vuông tại A AB AC, đường cao AH. a) Cho AB = 6 cm và 3 5 cosABC. Tính BC, AC, BH. b) Kẻ HD AB tại D, HE AC tại E. Chứng minh AD AB AE AC. c) Gọi I là trung điểm BC, AI cắt DE tại K. Chứng minh: 2 22 1 11 AK AD AE.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Sơn Đông, Sơn Tây, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của biểu thức A tại x = 25. b) Chứng minh 3 2 x B x. c) Tìm tất cả các giá trị nguyên của x để P AB có giá trị nguyên. + 1) Một cột đèn có bóng trên mặt đất dài 6m. Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 0 40. Tính chiều cao của cột đèn (làm tròn đến mét). 2) Cho tam giác ABC vuông tại A, đường cao AH. Biết AB cm AC cm 3 4. a) Tính AH b) Gọi D E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng. c) Kẻ trung tuyến AM gọi N là giao điểm của AM và DE. Tính tỉ số diện tích của tam giác AND và tam giác ABC. + Tìm các số xyz thỏa mãn đẳng thức.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Thanh Xuân, Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Cho biểu thức a) Tính giá trị của A khi 1 9 a b) Rút gọn B c) Tìm giá trị nguyên của a để B nhận giá trị nguyên. + Tính giá trị biểu thức. + Cho hình bình hành ABCD có 90 A α. Gọi I K lần lượt là hình chiếu của B′, D′ trên đường chéo AC. Gọi M N lần lượt là hình chiếu của C′ trên các đường thẳng A B. a) Chứng minh rằng: Tam giác BCM đồng dạng với tam giác DCN b) Chứng minh rằng: Tam giác CMN đồng dạng với tam giác BCA. Từ đó suy ra MN A C sinα c) Tính diện tích tứ giác ANCM biết BC 6 cm AB 4 cm và α 60. d) Chứng minh: 2 AC AD AN AB AM.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS thị trấn Văn Điển - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS thị trấn Văn Điển, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội : + Với x ≥ 0 và x ≠ 25 cho hai biểu thức. a) Tính A với x = 9. b) Chứng minh biểu thức 5Bx. c) Cho 3BPA. Tìm x nguyên để P có giá trị là một số nguyên. + Cho tam giác ABC vuông tại A, AB = 3 cm, AC = 4 cm. a) Giải tam giác ABC. b) Gọi I là trung điểm của BC vẽ AH BC. Tính AH AI. c) Qua A kẻ đường thẳng xy vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh: 2 4 BC MB NC. d) Gọi K là trung điểm của AH. Chứng minh BKN thẳng hàng. + Giải phương trình: 2x.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Vạn Phúc - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Vạn Phúc, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội : + Ở một thời điểm trong ngày, một cột cờ cao 11m có bóng trên mặt đất dài 6m. Hỏi góc giữa tia sáng mặt trời và bóng cột cờ là bao nhiêu? (làm tròn đến phút). + Cho hình chữ nhật ABCD có AB BC 9cm 12cm. Kẻ AH vuông góc với BD tại H. a) Tính BD AH và số đo góc ABD? b) Kẻ HI vuông góc với AB. Chứng minh AI AB DH HB. c) Đường thẳng AH cắt BC tại M và cắt DC tại N. Chứng minh 2 HA HM HN (làm tròn kết quả độ dài đến chữ số thập phân thứ 3 số đo góc đến độ). + Tìm x y thỏa mãn phương trình.