Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) 2022 2023 trường chuyên Hoàng Văn Thụ Hoà Bình

Nội dung Đề thi vào 10 môn Toán (chuyên) 2022 2023 trường chuyên Hoàng Văn Thụ Hoà Bình Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) 2022-2023 trường chuyên Hoàng Văn Thụ Hoà Bình Đề thi vào 10 môn Toán (chuyên) 2022-2023 trường chuyên Hoàng Văn Thụ Hoà Bình Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chuyên) 2022-2023 trường chuyên Hoàng Văn Thụ - Hoà Bình: Một cửa hàng điện máy thực hiện chương trình khuyến mãi giảm giá tất cả các mặt hàng theo quy định. Ông An muốn mua một ti vi với giá niêm yết là 9,200,000 đồng và một tủ lạnh với giá niêm yết là 7,100,000 đồng. Hỏi với chương trình khuyến mãi, ông An phải trả bao nhiêu tiền? Cho tam giác ABC vuông tại B nội tiếp trong đường tròn tâm O đường kính AC bằng 2. Kẻ dây cung BD vuông góc với AC, H là giao điểm của AC và BD. Trên HC lấy điểm E sao cho E đối xứng với A qua H. Đường tròn tâm O' đường kính EC cắt đoạn BC tại I (I khác C). Chứng minh rằng: CI/CA = CE/CB. Chứng minh rằng: Ba điểm D, I, E thẳng hàng. Chứng minh rằng: HI là tiếp tuyến của đường tròn đường kính EC. Khi B thay đổi thì H thay đổi, xác định vị trí của H trên AC để diện tích tam giác O'IH lớn nhất. Cho phương trình: 2x^2 + mx + 2 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm dương. Hy vọng đề thi sẽ giúp các em học sinh ôn tập hiệu quả và đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hùng Vương - Phú Thọ
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ : + Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Gọi P là điểm nằm trên đường tròn ngoại tiếp tam giác HBC và nằm trong tam giác ABC (P khác B, C, H). Gọi M là giao điểm của đường thẳng PB với đường tròn (O) (M khác B); N là giao điểm của đường thẳng PC với (O) (N khác C). Đường thẳng BM cắt AC tại E, đường thẳng CN cắt AB tại F. Đường tròn ngoại tiếp tam giác AME và đường tròn ngoại tiếp tam giác ANF cắt nhau tại Q (Q khác A). 1. Chứng minh tứ giác AEPF nội tiếp. 2. Chứng minh M, N, Q thẳng hàng. 3. Trong trường hợp AP là phân giác của MAN, chứng minh PQ đi qua trung điểm của đoạn thẳng BC. [ads] + Cho phương trình x2 + mx + n = 0 trong đó m2 + n2 = 2020. Chứng minh nếu phương trình có nghiệm x0 thì |x0| < √2021. + Cho dãy số gồm 4041 số chính phương liên tiếp, trong đó tổng của 2021 số đầu bằng tổng của 2020 số cuối. Tìm số hạng thứ 2021 của dãy số đó.
Đề thi vào lớp 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào lớp 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Đà Nẵng, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Đà Nẵng : + Trên đồ thị hàm số y = -0,5x^2, cho điểm M có hoành độ dương và điểm N có hoành độ âm. Đường thẳng MN cắt trục Oy tại C với O là gốc tọa độ. Viết phương trình đường thẳng OM khi C là tâm đường tròn ngoại tiếp tam giác OMN. [ads] + Cho tam giác ABC nhọn (AB khác AC), nội tiếp đường tròn tâm O. Kẻ đường phân giác AD (D thuộc BC) của tam giác đó. Lấy điểm E đối xứng với D qua trung điểm của đoạn BC. Đường thẳng vuông góc với BC tại D cắt AO ở H, đường thẳng vuông góc với BC tại E cắt ở AD tại K. Chứng minh rằng tứ giác BHCK nội tiếp. + Chứng minh rằng với mọi giá trị dương, khác 1 của x thì biểu thức A không nhận giá trị nguyên.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Nghệ An (chuyên)
Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An : + Trong hình chữ nhất có chiều dài 149 cm, chiều rộng 40 cm cho 2020 điểm phân biệt. Chứng minh rằng tồn tại ít nhất 2 điểm trong số 2020 điểm đã cho mà khoảng cách giữa chúng nhỏ hơn 2 cm. + Tìm tất cả các số nguyên dương x, y và số nguyên tố p thỏa mãn p^x – y^4 = 4. + Chứng minh rằng nếu m, n là hai số tự nhiên thỏa mãn 2m^2 + m = 3n^2 + n thì 2m + 2n + 1 là số chính phương.
Đề thi vào 10 môn Toán năm 2020 - 2021 trường THPT chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa, đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa : + Trên một đường tròn người ta lấy 2024 điểm phân biệt, các điểm được tô màu xanh và màu đỏ xen kẽ nhau. Tại mỗi điểm ta ghi một số thực khác 0 và 1 sao cho quy tắc sau được thỏa mãn “số ghi tại điểm màu xanh bằng tổng của hai số ghi màu đỏ kể nó; số ghi màu đỏ bằng tích của hai số ghi tại hai điểm màu xanh kế nó”. Tính tổng của 2024 số đó. [ads] + Cho tam giác ABC nhọn có BAC > 45 độ. Về phía ngoài tam giác ABC dựng các hình vuông ABMN và ACPQ. Đường thẳng AQ cắt đoạn thẳng BM tại E, đường thẳng AN cắt đoạn thẳng CP tại F. a) Chứng minh tứ giác EFQN nội tiếp được một đường tròn. b) Gọi I là trung điểm của đoạn thẳng EF. Chứng minh I là tâm đường trong ngoại tiếp tam giác ABC. c) Đường thẳng MN cắt đường thẳng PQ tại D. Các đường tròn ngoại tiếp tam giác DMQ và DNP cắt nhau tại K với K khác D. Các tiếp tuyến của đường tròn ngoại tiếp tam giác ABC tại B và C cắt nhau tại J. Chứng minh bốn điểm D, A, K, J thẳng hàng. + Chứng minh rằng nếu 2^n = 10a + b với a, b, n là các số tự nhiên thỏa mãn 0 < b < 10 và n > 3 thì ab chia hết cho 6.