Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2019 trường THPT Hoàng Hoa Thám - Hưng Yên

giới thiệu đến bạn đọc nội dung đề thi thử Toán THPTQG 2019 trường THPT Hoàng Hoa Thám – Hưng Yên, nhằm giúp bạn đọc ôn tập để chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019, đề được biên soạn bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, tuy nhiên nội dung chỉ giới hạn đến các phần kiến thức đã học, đề có mã 061 gồm 7 trang với 50 câu trắc nghiệm, học sinh hoàn thành bài thi trong 90 phút, đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG 2019 trường THPT Hoàng Hoa Thám – Hưng Yên : + Một cái thùng đựng đầy nước được tạo thành từ việc cắt mặt xung quanh của một hình nón bởi một mặt phẳng vuông góc với trục của hình nón. Miệng thùng là đường tròn có bán kính bằng ba lần bán kính mặt đáy của thùng. Người ta thả vào đó một khối cầu có đường kính bằng 3/2 chiều cao của thùng nước và đo được thể tích nước tràn ra ngoài là 54π√3 (dm3). Biết rằng khối cầu tiếp xúc với mặt trong của thùng và đúng một nửa của khối cầu đã chìm trong nước (hình vẽ). Thể tích nước còn lại trong thùng có giá trị nào sau đây? [ads] + Một học sinh A trường THPT Hoàng Hoa Thám, Hưng Yên khi 15 tuổi được hưởng tài sản thừa kế 200 000 000 VNĐ. Số tiền này được bảo quản trong một ngân hàng B với kì hạn thanh toán 1 năm và học sinh A chỉ nhận được số tiền này khi 18 tuổi. Biết rằng khi 18 tuổi, số tiền mà học sinh A được nhận sẽ là 231 525 000 VNĐ. Vậy lãi suất kì hạn 1 năm của ngân hàng B là bao nhiêu? + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy P sao cho BP = 2PD. Khi đó giao điểm của đường thẳng CD với mp (MNP) là? A. Giao điểm của MP và CD. B. Giao điểm của NP và CD. C. Giao điểm của MN và CD. D. Trung điểm của CD.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán lần 1 - Mẫn Ngọc Quang
Đề thi thử THPT Quốc gia 2017 môn Toán lần 1 do thầy Mẫn Ngọc Quang biên soạn gồm 50 câu hỏi trắc nghiệm. Đề thi gồm 45 trang có đáp án và lời giải chi tiết.
Đề thi thử THPT Quốc gia 2017 môn Toán - VnMath lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán lần 1 trên diễn đàn toán học VnMath gồm 50 câu hỏi trắc nghiệm.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Khánh Hòa
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Khánh Hòa có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số đồng biến trên tập số thực. Câu 3: a) Giải bất phương trình mũ. b) Trong mặt phẳng (Oxy), tìm tập hợp điểm biểu diễn số phức z thỏa mãn. Câu 4: Tính tích phân. Câu 5: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu tâm I(1; 2;1) đồng thời tiếp xúc với đường thẳng d. Câu 6: a) Tìm số hạng không chứa x trong khai triển nhị thức. b) Tính giá trị của biểu thức lượng giác. Câu 7: a) Tính theo a thể tích khối chóp S.ABCD. b) Xác định và tính theo a độ dài đoạn vuông góc chung của SA và CD. Câu 8: Viết phương trình BC. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc 3. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số. Câu 3: a) Tìm số phức z và tính môđun của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng AB. b) Tìm điểm C thuộc trục x’Ox sao cho tam giác ABC vuông tại A. Câu 6: a) Giải giá trị của biểu thức lượng giác. b) Có 6 học sinh An, Bình, Xuân, Hạ, Thu, Đông tham gia công tác của trường. Nhà trường chia ngẫu nhiên các học sinh đó thành hai nhóm, mỗi nhóm 3 người. Tính xác suất để An và Bình ở chung một nhóm. Câu 7: Tính thể tích lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AC và BA’ theo a. Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức P.