Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2020 2021 trường chuyên Lê Quý Đôn Khánh Hòa

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2020 2021 trường chuyên Lê Quý Đôn Khánh Hòa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán lớp 11 năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn – Khánh Hòa, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận mã đề 132, 209, 357, 485. Trích dẫn đề thi HK2 Toán lớp 11 năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho tam giác ABC không cân, tập hợp tất cả các điểm trong không gian cách đều ba đỉnh A B C là: A. đường thẳng vuông góc với mặt phẳng chứa tam giác ABC tại tâm đường tròn ngoại tiếp của tam giác ABC. B. đường thẳng vuông góc với mặt phẳng chứa tam giác ABC tại tâm đường tròn nội tiếp của tam giác ABC. C. đường thẳng vuông góc với mặt phẳng chứa tam giác ABC tại trọng tâm của tam giác ABC. D. đường thẳng vuông góc với mặt phẳng chứa tam giác ABC tại trực tâm của tam giác ABC. + Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O và cạnh bên SA vuông góc với đáy (hình vẽ tham khảo bên dưới). Chọn khẳng định SAI? A. Góc giữa SB và mặt phẳng (ABCD) là góc SBA. B. Góc giữa mặt phẳng (SBD) và mặt phẳng (ABCD) là góc SOA. C. Hai mặt phẳng (SAC) và (SBD) vuông góc với nhau. D. Hình chiếu của A lên mặt phẳng (SCD) thuộc đường thẳng SD. + Cho hàm số 3 2 yx x 1có đồ thị là (C). Số tiếp tuyến của (C) mà tiếp tuyến đó song song với đường thẳng y x là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường TH Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường TH Thực hành Sài Gòn – TP HCM : + Cho đường cong (C) có phương trình. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó song song với đường thẳng d. + Quãng đường chuyển động của một chất điểm được biểu thị bởi công thức, trong đó t > 0, t tính bằng giây và s tính bằng mét. a) Hãy xác định vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm t. b) Tính gia tốc của chất điểm tại thời điểm vận tốc triệt tiêu. + Xét tính liên tục của hàm số y = f(x) tại x0 = 2.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Lê Trọng Tấn TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Lê Trọng Tấn TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Lê Trọng Tấn, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Lê Trọng Tấn – TP HCM : + Chứng minh phương trình: 5×4 + 3×3 – 6×2 – x + 1 = 0 có ít nhất hai nghiệm. + Tính giới hạn của các hàm số sau. + Tính giới hạn của các dãy số sau.
Đề thi học kì 2 (HK2) lớp 11 môn Toán THPT năm học 2019 2020 sở GD ĐT Bắc Giang
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán THPT năm học 2019 2020 sở GD ĐT Bắc Giang Bản PDF Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kì thi kiểm tra chất lượng môn Toán đối với học sinh lớp 11 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 môn Toán lớp 11 THPT năm học 2019 – 2020 sở GD&ĐT Bắc Giang mã đề 111 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 05 điểm) và 02 câu tự luận (chiếm 05 điểm), thời gian làm bài thi là 90 phút. Trích dẫn đề thi học kì 2 môn Toán lớp 11 THPT năm học 2019 – 2020 sở GD&ĐT Bắc Giang : + Trong các mệnh đề sau đây, mệnh đề nào đúng? A. Cho đường thẳng a vuông góc với mặt phẳng (P), mọi mặt phẳng (Q) chứa a thì (Q) ⊥ (P). B. Cho hai đường thẳng a và b vuông góc với nhau, mặt phẳng nào vuông góc với đường thẳng này thì song song với đường thẳng kia. C. Cho hai đường thẳng a và b chéo nhau, luôn luôn có một mặt phẳng chứa đường thẳng này và vuông góc với đưởng thẳng kia. D. Cho hai đường thẳng a và b vuông góc với nhau, nếu mặt phẳng (P) chứa a và mặt phẳng (Q) chứa b thì (P) ⊥ (Q). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a√3 và AC = 2a. Biết SA ⊥ (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60 độ. 1) Chứng minh BC ⊥ (SAB). 2) Gọi G là trọng tâm tam giác SAB. Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (CDG) theo a. + Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a. Một mặt phẳng (α) đi qua đỉnh B và cắt hai cạnh AA’, CC’ lần lượt tại điểm M và điểm N. Khoảng cách giữa hai đường thẳng MN và BB’ bằng? File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Bỉnh Khiêm Gia Lai
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Bỉnh Khiêm Gia Lai Bản PDF Đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Bỉnh Khiêm – Gia Lai mã đề 297 gồm 02 trang với 20 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Bỉnh Khiêm – Gia Lai : + Một vật chuyển động theo quy luật s(t) = -1/3t^3 + 2t^2 – 1/3 với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s(m) là quãng đường vật đi được trong khoảng thời gian t. Hỏi trong khoảng 10 (giây) kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng? + Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA vuông góc với đáy, góc giữa SC và đáy là 60 độ, M là trung điểm SD và I thuộc cạnh BM sao cho BI = 1/4.BM. a/ Chứng minh BC ⊥ (SAB). b/ Tính khoảng cách từ I đến mặt phẳng (SDC). [ads] + Cho hình chóp S.ABCD đáy là hình chữ nhật, cạnh bên SA vuông góc với mặt phẳng đáy, SA = AB = a√2, AD = a. Khoảng cách từ trung điểm của SC đến mặt phẳng (SBD) bằng?