Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2023 trường THCS Quỳnh Lập Nghệ An

Nội dung Đề thi thử Toán vào lần 2 năm 2023 trường THCS Quỳnh Lập Nghệ An Bản PDF Đề thi thử Toán vào lớp 10 lần 2 năm 2023 trường THCS Quỳnh Lập – Nghệ An đang được Sytu giới thiệu đến các thầy cô giáo và các em học sinh lớp 9. Đề thi bao gồm các câu hỏi và bài toán có đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả.

Một trong số đó là bài toán về việc tính toán sản phẩm cần sản xuất trong một phân xưởng theo kế hoạch. Với thông tin rằng phân xưởng đã hoàn thành công việc sớm hơn 3 ngày do sản xuất vượt mức, hỏi mỗi ngày phân xưởng cần phải sản xuất bao nhiêu sản phẩm để đạt được kế hoạch ban đầu?

Ngoài ra, đề thi cũng đưa ra bài toán về tính thể tích của một chai dung dịch rửa tay theo hình trụ. Bạn cần tính toán thể tích của chai dung dịch dựa trên thông tin về chiều cao và đường kính đáy của chai.

Cuối cùng, đề thi còn đưa ra bài toán về tam giác vuông cân và đường tròn nội tiếp. Bạn cần chứng minh các mệnh đề liên quan đến các điểm và đường thẳng trong bài toán để giải quyết vấn đề đề ra.

Đề thi cung cấp cho các em cơ hội rèn luyện kỹ năng giải bài toán, suy luận logic và tính toán. Hy vọng rằng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Hải Dương
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán, để từ đó các trường THPT tại tỉnh Hải Dương có cơ sở tuyển chọn các em vào lớp 10 theo tiêu chí của trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 môn Toán năm 2018 - 2019 sở GD và ĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở GD và ĐT Tiền Giang gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 05/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở Tiền Giang : + Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. [ads] + Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. + Cho phương trình x^2 – 2x – 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.
Đề tuyển sinh vào lớp 10 THPT 2018 - 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên)
Đề tuyển sinh vào lớp 10 THPT 2018 – 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên) gồm 1 trang với 10 bài toán tự luận, thí sinh làm bài trong 120 phút (không tính thời gian phát đề), kỳ thi được tổ chức vào ngày 01 tháng 06 năm 2018, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.