Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng thể tích khối đa diện

Tài liệu gồm 110 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện. Mục tiêu : Kiến thức : + Biết công thức tính thể tích khối lăng trụ, khối chóp. + Biết cách xác định chiều cao khối lăng trụ, khối chóp thông qua mối quan hệ về góc, khoảng cách và các hệ thức lượng trong tam giác. + Biết cách tính thể tích khối đa diện bằng phương pháp gián tiếp: phân chia khối đa diện, tách ghép, bổ sung khối đa diện, sử dụng công thức tỉ số thể tích. + Biết liên hệ với bài toán thực tế thông qua giải các bài toán thực tế, bài toán tìm giá trị lớn nhất, nhỏ nhất. Kĩ năng : + Thành thạo công thức tính thể tích các khối đa diện. + Tính được khoảng cách, góc thông qua bài toán thể tích. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thể tích khối chóp. – Bài toán 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. – Bài toán 2. Thể tích khối chóp có mặt bên vuông góc với đáy. – Bài toán 3. Thể tích khối chóp đều. – Bài toán 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. – Bài toán 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 2 : Thể tích khối lăng trụ. – Bài toán 1. Thể tích lăng trụ đứng. – Bài toán 2. Thể tích lăng trụ xiên. – Bài toán 3. Thể tích hình hộp. Dạng 3 : Tính thể tích khối đa diện bằng phương pháp gián tiếp. – Bài toán 1. Tỉ số thể tích. + Bài toán 1.1. Tỉ số thể tích khối chóp. + Bài toán 1.2. Tỉ số thể tích khối lăng trụ. + Bài toán 1.3. Tỉ số thể tích khối hộp. – Bài toán 2. Thể tích khối đa diện phức tạp. Dạng 4 : Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 5 : Sử dụng thể tích để tính khoảng cách. Dạng 6 : Bài toán thực tế về khối đa diện.

Nguồn: toanmath.com

Đọc Sách

Hình không gian thể tích từ cơ bản đến nâng cao - Nguyễn Tiến Đạt
Tài liệu gồm 42 trang tóm tắt lý thuyết, công thức tính và hướng dẫn giải các dạng toán về thể tích của khối đa diện. Tài liệu phù hợp để các học sinh bị “mất gốc” ôn lại kỹ năng giải toán hình học không gian. Nội dung tài liệu gồm: ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9 – 10 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG §2. HAI MẶT PHẲNG SONG SONG B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG §2. HAI MẶT PHẲNG VUÔNG GÓC §3. KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song 3. Khoảng cách giữa hai mặt phẳng song song 4. Khoảng cách giữa hai đường thẳng chéo nhau [ads] §4.GÓC 1. Góc giữa hai đường thẳng a và b 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) 3. Góc giữa hai mặt phẳng 4. Diện tích hình chiếu ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. CÁC CÔNG THỨC THỂ TÍCH CỦA KHỐI ĐA DIỆN 1. Thể tích khối lăng trụ: 2. Thể tích khối chóp: 3. Tỉ số thể tích tứ diện: B. PHÂN DẠNG BÀI TẬP LOẠI 1: THỂ TÍCH LĂNG TRỤ 1. Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy 2. Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng 3. Dạng 3: Lăng trụ đứng có góc giữa hai mặt phẳng 4. Dạng 4: Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Một số hình chóp đặc biệt: + Hình chóp tam giác đều + Hình chóp tứ giác đều + Hình chóp có một cạnh bên vuông góc với đáy 1. Dạng 1: Khối chóp có cạnh bên vuông góc với đáy 2. Dạng 2: Khối chóp có một mặt bên vuông góc với đáy 3. Dạng 3: Khối chóp đều 4. Dạng 4: Khối chóp và phương pháp tỉ số thể tích
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)
Tài liệu gồm 60 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình lăng trụ. Nội dung tài liệu gồm: Lý thuyết cơ bản và các công thức tính a. Hình lăng trụ đứng Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với đáy. Các mặt bên của hình lăng trụ đứng là hình chữ nhật và vuông góc với mặt đáy. b. Hình lăng trụ đều: Hình lăng tru đều là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của hình lăng trụ đều là những hình chữ nhật bằng nhau và vuông góc với mặt đáy. [ads] c. Hình hộp đứng: Hình hộp đứng là hình lăng trụ đứng có đáy là hình bình hành. Trong hình hộp đứng 4 mặt bên đều là hình chữ nhật. d. Hình hộp chữ nhật Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật. Tất cả 6 mặt của hình hộp chữ nhật đều là hình chữ nhật. Ví dụ và bài tập trắc nghiệm Bài tập trích từ các đề thi có giải Một số bài TEST thể tích chóp – lăng trụ sưu tầm
Chuyên đề khối đa diện - Trần Quốc Nghĩa
Tài liệu gồm 78 trang bao gồm lý thuyết cần nắm, hướng dẫn giải các dạng toán và bài tập trắc nghiệm có đáp án chuyên đề khối đa diện. – Vấn đề 1. Kiến thức cần nhớ – Vấn đề 2. Khối đa diện – Vấn đề 3. Đa diện lồi, đa diện đều – Vấn đề 4. Thể tích khối đa diện + Hình 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy + Hình 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy + Hình 3. Hình chóp tứ giác đều S.ABCD + Hình 4. Hình chóp S.ABC, có sa vuông góc với đáy (ABC) [ads] + Hình 6a. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) H6a.1 – Góc giữa cạnh bên và mặt đáy H6a.2 – Góc giữa mặt bên và mặt đáy + Hình 6b. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông H6b.1 – Góc giữa cạnh bên và mặt đáy H6b.2 – Góc giữa mặt bên và mặt đáy + Hình 7. Hình lăng trụ Bài tập tổng hợp Đáp án và giải trắc nghiệm
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 77 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình chóp. Nội dung gồm: + Tóm tắt lý thuyết cơ bản + Phân dạng bài tập theo dạng hình + Bài tập minh họa có lời giải chi tiết + Bài tập trắc nghiệm tự luyện [ads] Bạn đọc có thể xem tiếp tập 2 tại đây: Phân loại dạng và phương pháp giải nhanh hình không gian – Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)