Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện của hội Chữ thập đỏ huyện Ứng Hòa, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC nhọn (AB < AC). Vẽ về phía ngoài ABC các tam giác đều là ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao điểm của AB và DC. 1) Chứng minh ADC = ABE. 2) Chứng minh DIB = 60°. 3) Gọi M, N lần lượt là trung điểm CD và BE. Chứng minh AMN đều. 4) Chứng minh IA là tia phân giác DIE. + Cho 100 số hữu tỉ trong đó tích của bất kỳ ba số nào cũng là một số âm. Chứng minh rằng tất cả 100 số đó đều là số âm.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 trường THCS Ba Đồn - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS Ba Đồn, thị xã Ba Đồn, tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 trường THCS Ba Đồn – Quảng Bình : + Một trường THCS có ba lớp 7, tổng số học sinh hai lớp 7A, 7B là 85 em, Nếu chuyển 10 học sinh từ lớp 7A sang lớp 7C thì số học sinh ba lớp 7A, 7B, 7C tỉ lệ thuận với 7; 8; 9. Hỏi lúc đầu mỗi lớp có bao nhiêu học sinh? + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p + 1)(p − 1) chia hết cho 24. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. a) Chứng minh: MD = ME. b) Trên tia đối của tia CA lấy điểm K sao cho CK = BD, DK cắt BC tại I. Chứng minh I là trung điểm của DK. c) Đường vuông góc với DK tại I cắt AM tại S. Chứng minh SC ⊥ AK.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng các thửa ruộng A; B; C lần lượt tỉ lệ thuận với 4; 5; 6. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của thửa ruộng B và C là 42 m. Tính chiều dài mỗi thửa ruộng? + Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại điểm M. Lấy điểm D trên cạnh BC sao cho BD = BA. Gọi E là giao điểm của hai đường thẳng DM và BA. 1) Chứng minh: MA = MD 2) Kẻ DH ⊥ MC; AK ⊥ ME (H thuộc MC; K thuộc ME), gọi N là giao điểm của hai tia DH và AK. Chứng minh MHN = MKN và ba điểm B, M, N thẳng hàng 3) Từ C kẻ đường thẳng vuông góc với AC cắt tia BM tại F. Chứng minh: AB AM CF CM. + Cho tích A = 1.2.3.4.5…398.399.400. Hỏi tích A có tận cùng bao nhiêu chữ số 0?
Đề Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho p là số nguyên tố lớn hơn 3 thỏa mãn 10p + 1 cũng là số nguyên tố. Chứng minh rằng 5p + 1 chia hết cho 6. Tìm số abcde sao cho abcde = 2.ab.cde. + Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của HAB cắt BC tại D. Kẻ DK vuông góc AB (K thuộc AB). Chứng minh: a/ AH = AK b/ Tam giác ACD cân c/ AB + AC < BC + AH. + Cho tam giác ABC có A = 75°. Điểm D trên cạnh BC sao cho các tam giác ABD và ACD là các tam giác cân. Tính số đo của B, C.
Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Đồng Xuân - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS Đồng Xuân, tỉnh Vĩnh Phúc; đề thi gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Đồng Xuân – Vĩnh Phúc : + Một người gửi tiết kiệm tại ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kỳ hạn 1 năm lĩnh lãi mỗi quý (3 tháng). Theo quy định nếu đến hạn mà người gửi không đến lĩnh lãi thì số tiền lãi đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh kỳ quý thứ nhất, các quý còn lại thì vẫn được lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau 1 năm là bao nhiêu? + Cho tam giác ABC có A 90. Kẻ AH vuông góc với BC (H thuộc BC). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh AB AC BC DE. + Cho ∆ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm E nằm giữa hai điểm C và M. Kẻ BH và CK lần lượt vuông góc với đường thẳng AE (H K thuộc đường thẳng AE). a) Chứng minh: BH AK. b) Chứng minh: AHM CKM.