Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2018 2019 sở GD và ĐT Hải Dương

Nội dung Đề tuyển sinh THPT năm 2018 2019 sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2018 - 2019 sở GD và ĐT Hải Dương Đề tuyển sinh THPT năm 2018 - 2019 sở GD và ĐT Hải Dương Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 của sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán. Mục tiêu chính của đề thi là giúp các trường THPT tại tỉnh Hải Dương chọn lựa học sinh vào lớp 10 dựa trên tiêu chí của trường. Đề thi cung cấp lời giải chi tiết để học sinh hiểu rõ bài giải và có thể tự giải quyết các bài toán phức tạp. Việc soạn đề tuyển sinh cũng nhằm hỗ trợ học sinh tự tin hơn khi chuẩn bị cho kỳ thi tuyển sinh vào lớp 10, giúp họ nắm vững kiến thức và kỹ năng cần thiết. Đề thi cũng góp phần nâng cao chất lượng đào tạo và tuyển sinh của các trường THPT tại Hải Dương, đồng thời tạo điều kiện cho học sinh phát triển toàn diện trong học tập và sự nghiệp sau này. Qua việc tổ chức thi tuyển sinh và sử dụng đề thi này, sở GD và ĐT Hải Dương mong muốn tìm ra những học sinh có tiềm năng và khả năng để đào tạo và phát triển trong tương lai, đồng thời đáp ứng nhu cầu chất lượng đào tạo của xã hội.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn trên toàn quốc
Sách gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn từ năm 2000 đến nay. Các đề thi đều có lời giải chi tiết .
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. + Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. [ads] b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. + Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2