Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ

Nội dung Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ Phòng Giáo dục và Đào tạo Tân Sơn Phú Thọ sẽ tổ chức kì thi chọn Học sinh giỏi (HSG) môn Toán cho học sinh lớp 9 trên địa bàn huyện. Đề thi sẽ được xây dựng dựa trên chương trình Toán chính thức của Bộ Giáo dục và Đào tạo. Kì thi nhằm đánh giá năng lực và kiến thức Toán của học sinh, từ đó tìm ra những tài năng tiềm năng để đại diện cho huyện tham gia các kỳ thi quốc gia sau này.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2020.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.
Đề chọn học sinh giỏi Toán THCS năm 2020 - 2021 phòng GDĐT thành phố Vĩnh Long
Đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 06 tháng 12 năm 2020. Trích dẫn đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long : + Chứng minh rằng với mọi số nguyên n thì n^2 + n + 2 không chia hết cho 3. + Tìm các số nguyên x; y thỏa mãn y^2 + 2xy – 3x – 2 = 0. + Cho hình thang ABCD (AB // CD) có D = 60°, C = 30°, AB = 2cm, CD = 6cm. Tính diện tích hình thang ABCD. + Cho điểm M thuộc đường tròn (O) và đường kính AB (M khác A, M khác B và MA = MB). Tia phân giác của góc AMB cắt AC tại C. Qua C vẽ đường thẳng vuông góc với AB cắt các đường thẳng AM và BM lần lượt tại D và H. a) Chứng minh hai đường thẳng AH và BD cắt nhau tại điểm N nằm trên đường tròn (O). b) Gọi E là hình chiếu của H trên tiếp tuyến tại A của đường tròn (O). Chứng minh tứ giác ACHE là hình vuông. c) Gọi F là hình chiếu của D trên tiếp tuyến tại B của đường tròn (O). Chứng minh bốn điểm E, M, N, F thẳng hàng.