Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Lào Cai

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Lào Cai Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Lào Cai Ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021 - 2022. Đề tuyển sinh môn Toán cho lớp 10 năm 2021 - 2022 của sở GD&ĐT Lào Cai bao gồm 01 trang đề thi với 07 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Cụ thể, trong đề tuyển sinh môn Toán năm 2021 - 2022 của sở GD&ĐT Lào Cai, có những bài toán như sau: Cho hàm số y = x^2 + b. Hãy tìm giá trị của b sao cho đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Cho Parabol y = x^2 và đường thẳng d: y = mx + m/4 (với m là tham số). Tìm điều kiện của tham số m để đường thẳng d cắt Parabol tại hai điểm nằm về hai phía của trục tung. Hai bạn An và Bình cùng may khẩu trang để ủng hộ địa phương đang có dịch bệnh Covid-19. Mất hai ngày để hoàn thành công việc khi cả hai làm cùng nhau. Nếu chỉ có An làm việc trong 4 ngày rồi nghỉ và Bình tiếp tục làm trong 1 ngày nữa thì công việc cũng được hoàn thành. Hỏi mỗi người làm riêng một mình thì sau bao lâu sẽ hoàn thành công việc? Đề tuyển sinh này không chỉ giúp học sinh thử sức mình trong môn Toán mà còn giúp họ rèn luyện kỹ năng tư duy logic, xử lý vấn đề và giải quyết bài toán. Đây là cơ hội tốt để các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH c) Chứng minh đẳng thức: PA^2 = PC.PD d) BC cắt OP tại J, chứng minh AJ//DB
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m thì diện tích đám đất sẽ tăng thêm 1m2. Tính độ dài các cạnh ban đầu của đám đất. + Cho tam giác ABC (AB <AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: [ads] a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D,E,F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Long gồm 6 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R), các đường cao AD, BM, CN cắt nhau tại H. a. Chứng minh rằng AM.AC=AN.AB b. Chứng minh rằng OA vuông góc với MN c. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI=NG
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng