Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Lào Cai

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Lào Cai Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Lào Cai Ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021 - 2022. Đề tuyển sinh môn Toán cho lớp 10 năm 2021 - 2022 của sở GD&ĐT Lào Cai bao gồm 01 trang đề thi với 07 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Cụ thể, trong đề tuyển sinh môn Toán năm 2021 - 2022 của sở GD&ĐT Lào Cai, có những bài toán như sau: Cho hàm số y = x^2 + b. Hãy tìm giá trị của b sao cho đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Cho Parabol y = x^2 và đường thẳng d: y = mx + m/4 (với m là tham số). Tìm điều kiện của tham số m để đường thẳng d cắt Parabol tại hai điểm nằm về hai phía của trục tung. Hai bạn An và Bình cùng may khẩu trang để ủng hộ địa phương đang có dịch bệnh Covid-19. Mất hai ngày để hoàn thành công việc khi cả hai làm cùng nhau. Nếu chỉ có An làm việc trong 4 ngày rồi nghỉ và Bình tiếp tục làm trong 1 ngày nữa thì công việc cũng được hoàn thành. Hỏi mỗi người làm riêng một mình thì sau bao lâu sẽ hoàn thành công việc? Đề tuyển sinh này không chỉ giúp học sinh thử sức mình trong môn Toán mà còn giúp họ rèn luyện kỹ năng tư duy logic, xử lý vấn đề và giải quyết bài toán. Đây là cơ hội tốt để các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Ngô Quyền - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND quận Ngô Quyền, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Ngô Quyền – Hải Phòng : + Để thuận tiện cho việc kinh doanh, bác An thuê một cửa hàng với giá 10 triệu đồng một tháng. Trước khi sử dụng, bác An phải sửa chữa thêm hết số tiền là 20 triệu đồng. Gọi y triệu đồng là tổng số tiền thuê và tiền sửa chữa, x là số tháng thuê cửa hàng. a) Lập công thức tính y theo x b) Hỏi bác An thuê cửa hàng trong bốn năm rưỡi thì hết tổng số tiền là bao nhiêu? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ địa điểm A đến địa điểm B có chiều dài là 50(km). Cùng một lúc và trên cùng một quãng đường đó, bạn Nam đi xe máy từ địa điểm A đến địa điểm B, bạn Bắc đi ô tô từ địa điểm B đến địa điểm A, họ gặp nhau sau 30 phút. Tính vận tốc trung bình của mỗi bạn, biết rằng bạn Bắc đi nhanh hơn bạn Nam là10 (km/h)? + Theo đơn đặt hàng, một kỹ sư thiết kế chi tiết máy chất liệu bằng kim loại dạng hình nón bằng cách quay một vòng quanh cạnh AB của ABC vuông tại A (như hình vẽ bên). Tính thể tích của chi tiết kim loại hình nón đó? (lấy pi = 3,14, làm tròn đến chữ số thập phân thứ nhất).
Đề thi thử Toán (chung) vào 10 chuyên năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán (chung) tuyển sinh vào lớp 10 THPT chuyên năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi dành cho học sinh thi vào các lớp chuyên tự nhiên và chuyên xã hội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán (chung) vào 10 chuyên năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Một chiếc bình thuỷ tinh hình trụ có chiều cao 30cm và đường kính đáy 20cm đựng đầy nước. Tính số lít nước đựng trong bình (coi rằng thành bình và đáy bình mỏng). + Cho nửa đường tròn O R đường kính BC A là điểm bất kì trên nửa đường tròn sao cho AB AC A khác C. Kẻ AH vuông góc với BC tại H. Gọi M N lần lượt là hình chiếu vuông góc của H trên AB AC. a) Chứng minh AB AM AC AN và tứ giác BCNM là tứ giác nội tiếp. b) Đường thẳng MN cắt nửa đường tròn O R tại các điểm E F (E thuộc cung AB nhỏ), cắt đoạn thẳng AO tại D. Chứng minh OA MN và AEH cân. c) Đường thẳng MN cắt đường thẳng BC tại I IA cắt nửa đường tròn O R tại điểm thứ hai là K (K khác A), KN cắt BC tại Q. Chứng minh 2 QH QC QI. + Tìm tất cả các giá trị của tham số m để đường thẳng y x m 2 1 cắt đường thẳng y x 2 3 tại điểm nằm trên trục hoành.
Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 08 tháng 05 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT Nam Đàn – Nghệ An : + Hai xe ô tô khởi hành cùng một lúc từ hai địa điểm A và B cách nhau 100 km. Xe thứ nhất chạy nhanh hơn xe thứ hai 10km/h nên đến nơi trước xe thứ hai 30 phút. Tính vận tốc mỗi xe? + Một hình nón được đặt vào bên trong một hình lập phương có cạnh bằng 1 dm (như hình vẽ). Tính thể tích hình nón? (với π = 3,14). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của (O) cắt tia CB tại S. Gọi I là trung điểm của BC. a) Chứng minh tứ giác SAOI nội tiếp b) Vẽ AH vuông góc với SO tại H, Tia AH cắt BC tại K. Chứng minh: SH.SO = SK.SI c) Chứng minh: SK SC SB SI d) Vẽ đường kính PQ đi qua điểm I (P thuộc cung nhỏ AC). SP cắt đường tròn (O) tại điểm thứ hai là M. Chứng minh PK vuông góc với SQ.
Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 10 tháng 05 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Nhằm phục vụ khán giả cổ vũ giải bóng đá U23 châu Á, một xưởng may 2000 chiếc áo cho cổ động viên trong một số ngày quy định. Trong ba ngày đầu, mỗi ngày xưởng may đúng số áo theo kế hoạch. Những ngày còn lại, nhờ cải tiến kỹ thuật, mỗi ngày xưởng may được nhiều hơn 30 chiếc áo so với số áo phải may trong một ngày theo kế hoạch. Vì thế, trước khi hết hạn một ngày, xưởng đã may được 1980 chiếc áo. Hỏi theo kế hoạch, mỗi ngày xưởng may bao nhiêu chiếc áo? + Cho hình chữ nhật ABCD có AD = 9cm, AB = 12cm. Vẽ AH vuông góc với BD tại H, AH cắt CD tại K. Tính AH và diện tích tam giác ADK. + Cho đường tròn (O) đường kính AB. Vẽ bán kính OM vuông góc với AB. Gọi I là trung điểm của MB. Đường thẳng AI cắt OM tại K và cắt đường tròn (O) tại N (N khác A). a) Chứng minh rằng tứ giác OKNB nội tiếp. b) Tia phân giác của góc MON cắt AN tại C. Tia OC cắt BM tại H, đường thẳng NH cắt đường tròn (O) tại P (P khác N) . Chứng minh MC song song với BN và C là trung điểm của BP.