Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán
Nội dung Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Phát triển bộ đề minh họa ôn thi TN THPT 2022 môn Toán Phát triển bộ đề minh họa ôn thi TN THPT 2022 môn Toán Bộ tài liệu bao gồm 57 trang, được chọn lọc cẩn thận từ 367 câu hỏi và bài toán trắc nghiệm có cùng định dạng. Đây là công cụ hữu ích giúp học sinh ôn thi hiệu quả, với nhiều mức độ khó khác nhau, phù hợp với các mục tiêu ôn tập của mỗi học sinh.
25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 2022
Nội dung 25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 2022 Bản PDF - Nội dung bài viết Sản phẩm 25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 - 2022 Sản phẩm 25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 - 2022 Tài liệu này bao gồm 25 đề thi thử môn Toán hướng đến kỳ thi tốt nghiệp THPT năm học 2021 - 2022, tổng cộng 462 trang. Mỗi đề đều đi kèm đáp án và lời giải chi tiết, giúp học sinh ôn tập một cách hiệu quả và chuẩn bị tốt cho kỳ thi quan trọng. Nhóm biên soạn tài liệu, có kinh nghiệm từng trải qua những áp lực của các bạn học sinh hiện nay. Họ mong muốn chia sẻ sự chăm sóc, sự nhiệt huyết và niềm tin vào các bạn học sinh năm 2k4. Tài liệu này không chỉ là sự kết hợp của các đề thi thử mà nhóm đã tự soạn, mà còn là sự sáng tạo, tâm huyết và ý tưởng mới lạ trong việc giải quyết các bài tập. Nhóm biên soạn cũng đã nghiên cứu và sửa đổi một số dạng bài tập từ các nguồn tài liệu khác nhau, nhằm mục đích hỗ trợ học sinh trong quá trình ôn tập. Tuy nhiên, họ cũng nhận thức rằng có thể sẽ có những sai sót hoặc thiếu sót trong quá trình biên soạn, vì vậy mong nhận được phản hồi chân thành từ độc giả để hoàn thiện hơn sản phẩm. Tài liệu này được phát hành miễn phí với mục đích hỗ trợ học sinh, vì vậy việc sử dụng tài liệu cho mục đích thương mại là không được phép. Nhóm biên soạn mong muốn nhận được sự góp ý và đóng góp tích cực từ cộng đồng học sinh và giáo viên. Chân thành cảm ơn sự ủng hộ của các độc giả.
Chuyên đề trong đề thi tốt nghiệp THPT Quốc gia lớp 2017 môn Toán 2021
Nội dung Chuyên đề trong đề thi tốt nghiệp THPT Quốc gia lớp 2017 môn Toán 2021 Bản PDF - Nội dung bài viết Chuyên Đề Trong Đề Thi Tốt Nghiệp THPT Quốc Gia Môn Toán 2021 Chuyên Đề Trong Đề Thi Tốt Nghiệp THPT Quốc Gia Môn Toán 2021 Tài liệu này bao gồm 199 trang, chứa các chuyên đề quan trọng trong đề thi tốt nghiệp THPT Quốc Gia môn Toán từ năm 2017 đến năm 2021. Mục Lục: PHẦN I. ĐẠI SỐ VÀ GIẢI TÍCH 1. Chuyên đề 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Trang 3) 2. Chuyên đề 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit (Trang 68) 3. Chuyên đề 3: Nguyên hàm, tích phân và ứng dụng (Trang 88) 4. Chuyên đề 4: Số phức (Trang 116) 5. Chuyên đề 5: Xác suất (Trang 128) 6. Chuyên đề 6: Cấp số cộng - cấp số nhân (Trang 133) 7. Chuyên đề 7: Giới hạn dãy số - hàm số (Trang 134) PHẦN II. HÌNH HỌC 1. Chuyên đề 1: Khối đa diện (Trang 136) 2. Chuyên đề 2: Mặt nón, mặt trụ, mặt cầu (Trang 146) 3. Chuyên đề 3: Phương pháp toạ độ trong không gian (Trang 157) 4. Chuyên đề 4: Góc - khoảng cách trong không gian (Trang 183) Đây là tài liệu cung cấp kiến thức chi tiết và toàn diện về các chuyên đề quan trọng trong môn Toán, giúp học sinh chuẩn bị tốt cho kỳ thi tốt nghiệp THPT Quốc Gia. Các lý thuyết và bài tập trong tài liệu sẽ giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập hiệu quả.
Phân tích một số câu khó trong đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021
Nội dung Phân tích một số câu khó trong đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 Bản PDF - Nội dung bài viết Phân tích đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 Phân tích đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 Tài liệu này được biên soạn bởi Ths Nguyễn Minh Nhiên, Phó Trưởng phòng GDTrH – GDTX sở GD&ĐT Bắc Ninh, nhằm giải và phân tích những câu khó trong đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021. Buổi thi diễn ra vào ngày 06/08/2021, với 24 mã đề khác nhau. Bài thi môn Toán trong kỳ thi tốt nghiệp THPT đợt 2 năm 2021 được thiết kế dựa trên chương trình lớp 12, với 38 câu ở mức độ nhận biết, thông hiểu, kiểm tra kiến thức cơ bản của lớp 11 và lớp 12. Các câu từ 39 đến 50 đều kiểm tra khả năng vận dụng cao của học sinh, yêu cầu tổng hợp kiến thức trong chương trình THPT. Đề thi đợt 2 có nhiều câu quen thuộc, một số dạng bài đã xuất hiện trong đề thi đợt 1. Mục tiêu của tài liệu này là giúp giáo viên và học sinh có tài liệu ôn tập, nắm vững kiến thức, tiếp cận các bài toán mới, hay và lạ. Bài viết mang đến sự tham khảo cho giáo viên, giúp học sinh chuẩn bị tốt cho kỳ thi trắc nghiệm môn Toán.