Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)

Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol
Nội dung Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu này bao gồm 08 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến đường thẳng và parabol trong chương trình Toán lớp 9. Mọi bài tập đều có đáp án và lời giải chi tiết. Bài toán về đường thẳng và parabol thường đưa ra phương trình của đường thẳng d (dạng y = mx + n) và parabol P (dạng y = ax^2 + bx + c) và yêu cầu tìm số giao điểm giữa chúng. Để giải bài toán này, ta có thể sử dụng phương pháp so sánh biệt thức ∆ của phương trình hoành độ giao điểm của d và P. Qua bảng thống kê số giao điểm và biệt thức ∆, ta có thể dễ dàng xác định vị trí tương đối của đường thẳng và parabol: không cắt, tiếp xúc hoặc cắt tại hai điểm phân biệt. Tài liệu cung cấp một loạt bài tập giúp học sinh ôn tập và nắm vững kiến thức về đường thẳng và parabol. File WORD dành cho giáo viên giúp dễ dàng sử dụng và chỉnh sửa theo nhu cầu.
Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Thông qua tài liệu này, học sinh sẽ được học về kiến thức cơ bản về góc có đỉnh bên trong đường tròn và góc có đỉnh bên ngoài đường tròn trong môn Toán lớp 9. A. Lý thuyết: 1. Góc có đỉnh bên trong đường tròn: Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn: Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập: Dạng 1: Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2: Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập, giúp học sinh hiểu rõ hơn về chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn.
Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp Bản PDF - Nội dung bài viết Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn ToánLý Thuyết Về Góc Nội TiếpBài Tập Thực Hành Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn Toán Chào mừng các bạn học sinh lớp 9 đến với tài liệu chuyên đề về góc nội tiếp trong môn Toán. Tài liệu này bao gồm 09 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập về chủ đề góc nội tiếp trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để giúp các bạn tự học và ôn tập hiệu quả. Lý Thuyết Về Góc Nội Tiếp 1. Định nghĩa: Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn. Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. Bài Tập Thực Hành Để làm quen với kiến thức về góc nội tiếp, chúng ta sẽ thực hành qua các dạng bài tập sau: Dạng 1: Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau bằng cách áp dụng hệ quả trong phần lý thuyết. Dạng 2: Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng bằng cách sử dụng kiến thức về góc nội tiếp. Nhằm giúp các bạn hiểu rõ hơn về chủ đề này, tài liệu này đã được biên soạn cẩn thận và chi tiết. Chúc các bạn học tốt và thành công trên con đường học tập!
Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Tài liệu này bao gồm 09 trang với kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề góc ở tâm và số đo cung trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết. Trong phần lý thuyết, bạn sẽ được học về góc ở tâm, số đo cung và cách so sánh hai cung. Bạn sẽ tìm hiểu khi nào thì tổng số đo của hai cung bằng số đo của cung lớn. Trong phần bài tập, có hai dạng toán chính. Dạng 1 là tính số đo của góc ở tâm và cung bị chắn. Bạn sẽ được hướng dẫn cách tính các số đo này và sử dụng tỉ số lượng giác để giải bài toán. Dạng 2 là chứng minh hai cung bằng nhau, thông qua việc chứng minh cùng một số đo. Tài liệu cung cấp file WORD để quý thầy cô tham khảo và sử dụng trong việc giảng dạy. Đảm bảo rằng bạn sẽ hiểu rõ và áp dụng được kiến thức trong phần góc ở tâm và số đo cung sau khi sử dụng tài liệu này.