Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 9 năm 2022 - 2023 trường Thực hành Sài Gòn - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 trường Thực hành Sài Gòn – TP HCM : + Hàng năm, sau khi kết thúc kiểm tra học kỳ I, học sinh trường Trung học Thực hành Sài Gòn lại náo nức chào đón ngày Hội Xuân với nhiều hoạt động thú vị và ý nghĩa. Trong đó, hoạt động “Nhà kinh doanh tài ba” được các bạn khối lớp 9 mong đợi hơn cả. Các lớp sẽ mở các gian hàng trò chơi dân gian, quà lưu niệm, ẩm thực… và học sinh toàn trường sẽ mua các sản phẩm hoặc dịch vụ bằng phiếu do ban tổ chức phát hành. Sau khi trích một phần các khoản thu để gây quỹ trao quà Tết cho các bạn học sinh và người dân có hoàn cảnh khó khăn tại địa phương, các lớp sẽ được hoàn tiền từ số lượng phiếu thu được với số tiền 3 400 đồng cho mỗi phiếu. Năm nay, lớp 9A quyết định tổ chức gian hàng bán quà lưu niệm với tiền vốn là 5 400 000 đồng. Gọi x là số phiếu lớp 9A thu được từ gian hàng và y (đồng) là tổng số tiền nhận được tương ứng sau khi đã trừ vốn (khi y nhận giá trị âm, ta hiểu gian hàng của lớp 9A bị lỗ vốn). a) Viết công thức tính y theo x. b) Lớp 9A phải thu vào ít nhất bao nhiêu phiếu để không bị lỗ vốn? + Bạn Khánh là một người chăm chỉ luyện tập thể thao. Hai môn thể thao yêu thích của bạn là bơi lội và chạy bộ. Khánh tiêu thụ 15 calo cho mỗi phút bơi và 10 calo cho mỗi phút chạy bộ. Hôm nay, Khánh mất 1,5 giờ cho cả hai hoạt động trên và tiêu thụ hết 1200 calo. Hỏi hôm nay bạn Khánh đã dành bao nhiêu thời gian cho hoạt động chạy bộ? + Hai người ở hai vị trí A và B nhìn nóc một tòa nhà ở vị trí C với hai góc lần lượt là 0 30 và 0 45 so với phương ngang như hình dưới. Tính chiều cao CH của tòa nhà theo mét (làm tròn kết quả đến hàng phần trăm), biết rằng khoảng cách AB bằng 200m và ba điểm A B H thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối kỳ 1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 1 - TP HCM
Thứ Ba ngày 22 tháng 12 năm 2020, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 1 năm học 2020 – 2021. Đề thi cuối kỳ 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM gồm 02 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi cuối học kỳ 1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 4 - TP HCM
Đề thi cuối học kỳ 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Quận 4, thành phố Hồ Chí Minh gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi cuối học kỳ 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 4 – TP HCM : + Từ đài quan sát được đặt trên đỉnh của một tòa nhà (điểm A) nhìn xuống hai điểm B và C ở hai bên bờ sông được mô tả như hình vẽ. Biết chiều cao của tòa nhà là AH = 461 mét, khi nhìn xuống hai điểm B và C thì góc HAB và góc HAC có số đo lần lượt là 42 độ và 55°. Hãy tính khoảng cách hai điểm B và C hai bên bờ sông (làm tròn kết quả đến mét). + Sau buổi lễ chào mừng “Ngày nhà giáo Việt Nam 20/11” lớp 9A cùng nhau đi ăn kem ở một quán gần trường. Nhân dịp quán mới khai trương nên có khuyến mãi, bắt đầu từ ly thứ 5 giá mỗi ly kem giảm 4 000 đồng so với giá ban đầu. Lớp 9A mua 40 ly kem, khi tính tiền chủ cửa hàng thấy lớp mua nhiều nên giảm thêm 5% số tiền trên hóa đơn vì vậy số tiền lớp 9A chỉ phải trả là 471 200 đồng. a. Tính số tiền chủ cửa hàng đã giảm thêm 5% trên hóa đơn cho lớp 9A. b. Hỏi giá của một ly kem ban đầu là bao nhiêu? + Hai trường A, B có 250 học sinh lớp 9 dự thi vào lớp 10, kết quả có 210 học sinh đã trúng tuyển. Tính riêng tỉ lệ thì trường A trúng tuyển vào lớp 10 đạt 80%, trường B trúng tuyển vào lớp 10 đạt 90%. Hỏi mỗi trường có bao nhiêu học sinh lớp 9 dự thi vào lớp 10.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Tây Hồ - Hà Nội
Thứ Ba ngày 22 tháng 12 năm 2020, phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kì 1 môn Toán lớp 9 năm học 2020 – 2021. Đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Tây Hồ – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Tây Hồ – Hà Nội : + Một người đứng trên ngọn hải đăng cao 100 mét quan sát hai lần một con thuyền đang đi về phía ngọn hải đăng. Lần thứ nhất người đó nhìn thấy thuyền với góc hạ là 20 độ, lần thứ hai người đó nhìn thấy thuyền với góc hạ là 30 độ. Hỏi con thuyền đã đi được bao nhiêu mét giữa hai lần quan sát? (làm tròn đến mét). + Cho đường tròn (O;R), đường kính AB. Qua điểm A và điểm B lần lượt vẽ đường thẳng d và d ‘ là hai tiếp tuyến của đường tròn. Lấy điểm M bất kì thuộc đường tròn (O) (M khác A và B). Qua M kẻ tiếp tuyến với đường tròn (O) cắt d và d ‘ theo thứ tự tại C và D. a) Chứng minh bốn điểm A, C, M, O thuộc một đường tròn. b) Chứng minh tam giác OCD vuông và 4.AC.BD = AB^2. c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD. + Cho các số thực dương x, y thỏa mãn xy > 2020x + 2021y. Chứng minh rằng: x + y > (√2020 + √2021)^2.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tia tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên da, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ox, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng. + Giải phương trình: x2 – 1 = 2√(2x + 1). + Cho a, b là các số thực dương thỏa mãn a – √a = √b – b. Tìm giá trị nhỏ nhất của biểu thức: P = a2 + b2 + 2020/(√a + √b)^2.