Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề góc với đường tròn

Nội dung Chuyên đề góc với đường tròn Bản PDF - Nội dung bài viết Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn là một phần quan trọng của chương trình Hình học lớp 9. Tài liệu này gồm 30 trang, cung cấp hướng dẫn chi tiết về cách giải các dạng toán liên quan đến góc trong đường tròn. Chúng ta sẽ tìm hiểu về các loại góc như góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung. Trước tiên, để tính số đo của góc ở tâm, chúng ta cần biết rằng số đo của cung bị chắn bởi góc ở tâm chính là số đo của góc đó. Ngoài ra, chúng ta có thể sử dụng các kiến thức về tỉ lệ lượng giác, quan hệ đường kính và dây cung để giải các bài tập về góc ở tâm. Chủ đề tiếp theo là về góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung. Điểm chung chính là hai góc nội tiếp chắn bởi cùng một cung sẽ bằng nhau. Chúng ta cũng cần quan tâm đến các quy tắc về góc vuông, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. Chủ đề cuối cùng nói về góc có đỉnh bên trong và bên ngoài đường tròn. Khi gặp các bài toán liên quan đến góc này, chúng ta có thể tính số đo của chúng dựa vào số đo của các cung bị chắn. Quan trọng nhất là nhớ rằng số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. Cuối cùng, tài liệu còn cung cấp một số bài tập thực hành về góc với đường tròn, từ các dạng cơ bản đến phức tạp. Qua việc giải các bài tập này, học sinh sẽ củng cố kiến thức và kỹ năng giải toán, từ đó nắm vững chương trình Hình học lớp 9 chương 3. Đây thực sự là một tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc với đường tròn và áp dụng kiến thức vào việc giải các bài tập thực tế.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 21 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và góc trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải tam giác vuông. Cách giải: Để giải tam giác vuông ta dùng hệ thức giữa cạnh và các góc trong tam giác vuông. – Chú ý: Các bài toán về giải tam giác vuông bao gồm: + Giải tam giác vuông khi biết độ dài 1 cạnh và số đo 1 góc nhọn. + Giải tam giác vuông khi biết độ dài 2 cạnh. Dạng 2 : Tính cạnh và góc của tam giác. Cách giải: Làm xuất hiện tam giác vuông để áp dụng các hệ thức trên bằng cách kẻ thêm đường cao. Dạng 3 : Toán ứng dụng thực tế. Cách giải: Dùng hệ thức giữa cạnh và góc trong tam giác vuông để giải quyết tình huống trong thực tế. Dạng 4 : Toán tổng hợp. Cách giải: Vận dụng linh hoạt một số hệ thức giữa cạnh và góc trong một tam giác vuông để giải toán. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.