Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng

Tài liệu gồm 48 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (Giáo viên Toán trường THPT Đặng Huy Trứ & Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm liên quan đến ứng dụng tích phân để tính diện tích hình phẳng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 và luyện thi THPT Quốc gia môn Toán. Trích dẫn Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng : + Cho đồ thị hàm số y f x và y g x như hình vẽ bên dưới: Biết đồ thị của hàm số y f x là một Parabol đỉnh I có tung độ bằng 1 2 và y g x là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là 1 2 3 x x x thỏa mãn 1 2 3 x x x 6. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số y f x và y g x gần nhất với giá trị nào dưới đây? + Cho hàm số 4 2 y f x ax bx c có đồ thị C và cắt trục hoành tại điểm có hoành độ bằng 1. Tiếp tuyến d tại điểm có hoành độ x 1 của C cắt C tại 2 điểm khác có hoành độ lần lượt là 0 và 2. Gọi 1 2 S S là diện tích các phần hình phẳng giới hạn bởi d và C (với 2 S là diện tích phần hình phẳng nằm bên phải trục Oy). Tỷ số 1 2 S S bằng? + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2 m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)?

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2021 môn Toán Nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 163 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 3, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Nguyên hàm, tích phân và ứng dụng: 1. Mức độ nhận biết: 105 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 15). 2. Mức độ thông hiểu: 94 câu. + Câu hỏi và bài tập (Trang 37). + Đáp án và lời giải chi tiết (Trang 50). 3. Mức độ vận dụng thấp: 57 câu. + Câu hỏi và bài tập (Trang 78). + Đáp án và lời giải chi tiết (Trang 89). 4. Mức độ vận dụng cao: 52 câu. + Câu hỏi và bài tập (Trang 115). + Đáp án và lời giải chi tiết (Trang 126). Xem thêm : + Tổng ôn tập TN THPT 2021 môn Toán: Ứng dụng đạo hàm và khảo sát hàm số + Tổng ôn tập TN THPT 2021 môn Toán: Hàm số lũy thừa – mũ – logarit
5 dạng toán ứng dụng của tích phân thường gặp
Tài liệu gồm 124 trang, được tổng hợp bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, tuyển chọn các dạng bài tập ứng dụng của tích phân thường gặp trong chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Các bài tập ứng dụng của tích phân được phân chia thành 5 dạng toán: DẠNG TOÁN 1 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG. Dạng 1.1. Ứng dụng của tích phân tính diện tích hình phẳng (không có điều kiện). Dạng 1.2. Ứng dụng của tích phân tính diện tích hình phẳng (có điều kiện). DẠNG TOÁN 2 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH THỂ TÍCH KHỐI TRÒN XOAY. Dạng 2.1. Ứng dụng của tích phân tính thể tích khối tròn xoay (không có điều kiện). Dạng 2.2. Ứng dụng của tích phân tính thể tích khối tròn xoay (có điều kiện). DẠNG TOÁN 3 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI BÀI TOÁN CHUYỂN ĐỘNG. Dạng 3.1. Bài toán cho biết hàm số của vận tốc, quãng đường của chuyển động. Dạng 3.2. Bài toán cho biết đồ thị của vận tốc, quãng đường của chuyển động. DẠNG TOÁN 4 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN THỰC TẾ. Dạng 4.1. Bài toán liên quan đến diện tích. Dạng 4.2. Bài toán liên quan đến thể tích. DẠNG TOÁN 5 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN ĐẠI SỐ.
Ứng dụng tích phân trong các bài toán thực tế
Tài liệu gồm 77 trang, tuyển chọn và hướng dẫn giải các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong các bài toán thực tế, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT Quốc gia môn Toán năm học 2020 – 2021. Mục lục tài liệu ứng dụng tích phân trong các bài toán thực tế: A. Bài toán thực tế về vận tốc quãng đường (Trang 3). B. Bài toán thực tế về diện tích (Trang 23). C. Bài toán thực tế về thể tích (Trang 51).
Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Trọng
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, ví dụ minh họa và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Mục lục chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Trọng: Bài 1 . Nguyên hàm. + Dạng 1. Định nghĩa, tính chất và nguyên hàm cơ bản. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Phương pháp đổi biến. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Nguyên hàm từng phần. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 2 . Tích phân. + Dạng 1. Tích phân dùng định nghĩa, tính chất. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Tích phân đổi biến số. 1. Đổi biến số dạng 1. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Đổi biến số dạng 2. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Tích phân từng phần. 1. Dạng 1. $\int_\alpha ^\beta f \left( x \right)\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax}\\ {{e^{ax}}} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Dạng 2. $\int_a^\beta f \left( x \right)\ln \left( {ax} \right)dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 3. Dạng 3. $\int_\alpha ^\beta {{e^{ax}}} \left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 3 . Ứng dụng của tích phân trong hình học. + Dạng 1. Ứng dụng của tích phân tính diện tích hình phẳng. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Ứng dụng của tích phân tính thể tích. a. Ví dụ minh họa. b. Bài tập áp dụng.