Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình quy về phương trình bậc hai

Nội dung Chuyên đề phương trình quy về phương trình bậc hai Bản PDF - Nội dung bài viết Chuyên đề phương trình bậc hai: Tài liệu học tập toàn diện Chuyên đề phương trình bậc hai: Tài liệu học tập toàn diện Tài liệu Chuyên đề phương trình quy về phương trình bậc hai, được biên soạn bởi tác giả Toán Học Sơ Đồ, là một nguồn kiến thức vô cùng hữu ích cho học sinh. Với 39 trang sách, tài liệu tổng hợp các kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm. Đây là nguồn tư liệu quý giá để hỗ trợ học sinh trong quá trình nắm vững chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT: I. TÓM TẮT LÝ THUYẾT: 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN: Dạng 1. Giải phương trình trùng phương: + Bước 1: Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai. + Bước 2: Giải phương trình bậc hai ẩn t để tìm nghiệm của phương trình trùng phương. Dạng 2. Phương trình chứa ẩn ở mẫu thức: + Bước 1: Tìm điều kiện xác định của ẩn. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình bậc hai nhận được ở bước 2. Dạng 3. Phương trình đưa về dạng tích: + Bước 1: Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4. Giải phương trình bằng phương pháp đặt ẩn phụ: + Bước 1: Đặt điều kiện xác định (nếu có). + Bước 2: Đặt ẩn phụ và giải phương trình theo ẩn mới. + Bước 3: So sánh nghiệm tìm được với điều kiện xác định và kết luận. Dạng 5. Phương trình chứa biểu thức trong dấu căn: Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6. Một số dạng khác: Không chỉ giới hạn trong các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế để giải phương trình. III. BÀI TẬP VỂ NHÀ: Tài liệu cũng cung cấp bài tập cho học sinh để rèn luyện và nâng cao kiến thức sau giờ học. B. NÂNG CAO PHÁT TRIỂN TƯ DUY: Để giúp học sinh phát triển tư duy, tài liệu cung cấp phần bài tập nâng cao để đề cao khả năng logic và suy luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ: Phần này giúp học sinh củng cố kiến thức thông qua các câu hỏi trắc nghiệm, rèn luyện khả năng phản xạ nhanh nhạy. D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO: Để hỗ trợ học sinh tự học, tài liệu cung cấp phiếu bài tập cơ bản và nâng cao để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương
Nội dung Chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu tổng hợp kiến thức chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Tài liệu tổng hợp kiến thức chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Tài liệu này bao gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, chương 1 bài số 3-4. Tác phẩm tập trung vào các kiến thức trọng tâm và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề liên kết giữa phép nhân/phép chia và phép khai phương. Đặc điểm nổi bật của tài liệu bao gồm: - Phần Kiến thức trọng tâm: cung cấp kiến thức cần thiết cho học sinh hiểu rõ chuyên đề. - Các dạng toán: bao gồm các dạng toán từ cơ bản đến nâng cao, từ thực hiện phép tính đến giải phương trình, giúp phát triển tư duy toán học. - Trắc nghiệm rèn phản xạ: cung cấp bài tập trắc nghiệm để học sinh rèn luyện khả năng phản xạ và xử lý tình huống trong giải toán.
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Nội dung Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số Bản PDF - Nội dung bài viết Chuyên đề hàm số trong toán học Chuyên đề hàm số trong toán học Trong chuyên đề này, chúng ta sẽ cùng nhau tìm hiểu và bổ sung kiến thức về hàm số, một khái niệm quan trọng trong toán học. Hàm số là một mối quan hệ giữa các biến số x và y, trong đó với mỗi giá trị của x, ta luôn tìm được một giá trị tương ứng của y. Điều kiện xác định của hàm số là tất cả các giá trị của x khi thực hiện biểu thức hàm số, ta được kết quả có ý nghĩa. Đồ thị của hàm số là tập hợp các điểm M(x;y) trong mặt phẳng Oxy, thỏa mãn phương trình y = f(x). Chúng ta cũng sẽ tìm hiểu về hàm số đồng biến và hàm số nghịch biến. Hàm số đồng biến là khi giá trị của biến x tăng thì giá trị của hàm số cũng tăng, trong khi hàm số nghịch biến lại ngược lại. Ta cũng sẽ thực hành các dạng bài tập cơ bản và nâng cao như tính giá trị của hàm số, biểu diễn điểm trên mặt phẳng, xét sự đồng biến và nghịch biến, cũng như phát triển tư duy. Cuối cùng, chúng ta sẽ có cơ hội tự luyện và rèn luyện phản xạ thông qua các bài tập trắc nghiệm. Đây sẽ là cơ hội tuyệt vời để củng cố kiến thức và kỹ năng trong chương trình Đại số lớp 9 chương 2 bài số 1. Hãy chuẩn bị tinh thần và cùng nhau khám phá thế giới của hàm số trong toán học nhé!
Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn
Nội dung Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn Bản PDF - Nội dung bài viết Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Tài liệu này bao gồm 18 trang, cung cấp hướng dẫn cụ thể về cách chứng minh tứ giác nội tiếp và cách chứng minh các điểm cùng thuộc một đường tròn. Đây là một dạng bài toán thường gặp trong chương trình Hình học 9 và trong các bài toán khó hơn. Việc này giúp học sinh hiểu rõ hơn về tính chất và cách xác định tứ giác nội tiếp, cũng như cách chứng minh các điểm cùng thuộc một đường tròn. Hướng dẫn trong tài liệu được trình bày một cách dễ hiểu và chi tiết, giúp người đọc nắm bắt được bản chất của vấn đề và áp dụng vào thực hành một cách linh hoạt.