Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục - Nguyễn Chín Em

Tài liệu gồm 176 trang được biên soạn bởi thầy giáo Nguyễn Chín Em, tổng hợp lý thuyết trọng tâm cần nắm, hướng dẫn giải các dạng toán và tuyển chọn câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết các chủ đề: giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục … trong chương trình Đại số và Giải tích 11 chương 4. Khái quát nội dung chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục – Nguyễn Chín Em: CHUYÊN ĐỀ 1 . GIỚI HẠN DÃY SỐ. A TÓM TẮT LÝ THUYẾT 1 DÃY SỐ CÓ GIỚI HẠN. 1.1 Định nghĩa dãy số có giới hạn 0. 1.2 Một số dãy số có giới hạn 0 thường gặp. 2 DÃY SỐ CÓ GIỚI HẠN HỮU HẠN. 2.1 Định nghĩa dãy số có giới hạn. 2.2 Một số định lí. 2.3 Tổng quát của cấp số nhân lùi vô hạn. 3 DÃY SỐ CÓ GIỚI HẠN VÔ CỰC. 3.1 Dãy số có giới hạn +∞. 3.2 Một vài quy tắc tìm giới hạn vô cực. 3.3 Một số kết quả. B CÁC DẠNG TOÁN Dạng 1. Sử dụng định nghĩa chứng minh rằng lim un = L. Dạng 2. Tính giới hạn của dãy số bằng các định lí về giới hạn. Dạng 3. Tính tổng của cấp số nhân lùi vô hạn. Dạng 4. Dãy số có giới hạn vô cực. C CÂU HỎI TRẮC NGHIỆM CÓ ĐÁP ÁN CHUYÊN ĐỀ 2 . GIỚI HẠN CỦA HÀM SỐ. A TÓM TẮT LÝ THUYẾT 1 Giới hạn của hàm số tại một điểm. 2 Giới hạn của hàm số tại vô cực. 3 Một số định lí về giới hạn hữu hạn. 4 Giới hạn một bên. 5 Một vài quy tắc tìm giới hạn vô cực. 6 Các dạng vô định. [ads] B CÁC DẠNG TOÁN Dạng 1. Sử dụng định nghĩa giới hạn của hàm số tìm giới hạn. Dạng 2. Chứng minh rằng lim f(x) khi x → x0 không tồn tại. Dạng 3. Các định lí về giới hạn và giới hạn cơ bản để tìm giới hạn. Dạng 4. Tính giới hạn một bên của hàm số. Dạng 5. Giới hạn của hàm số số kép. Dạng 6. Một vài qui tắc tính giới hạn vô cực. Dạng 7. Dạng 0/0. Dạng 8. Giới hạn dạng 1^∞, 0·∞, ∞^0. C CÂU HỎI TRẮC NGHIỆM CÓ ĐÁP ÁN CHUYÊN ĐỀ 3 . HÀM SỐ LIÊN TỤC. A TÓM TẮT LÝ THUYẾT 1 Hàm số liên tục tại một điểm. 2 Hàm số liên tục trên một khoảng. 3 Các định lí về hàm số liên tục. B CÁC DẠNG TOÁN Dạng 1. Xét tính liên tục của hàm số tại một điểm – Dạng I. Dạng 2. Xét tính liên tục của hàm số tại một điểm – Dạng II. Dạng 3. Xét tính liên tục của hàm số trên một khoảng. Dạng 4. Sử dụng tính liên tục của hàm số để chứng minh. Dạng 5. Sử dụng tính liên tục của hàm số để xét dấu hàm số. C CÂU HỎI TRẮC NGHIỆM CÓ ĐÁP ÁN

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề giới hạn hàm số
Tài liệu gồm 46 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề giới hạn hàm số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. I. KIẾN THỨC TRỌNG TÂM 1) Giới hạn của hàm số tại một điểm. a) Giới hạn hữu hạn. b) Giới hạn vô cực. 2) Giới hạn của hàm số tại vô cực. 3) Một số định lí về giới hạn hữu hạn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1. Sử dụng định nghĩa giới hạn dãy số và những quy tắc cơ bản. Dạng 2. Khử dạng vô định về 0/0. Dạng 3. Khử dạng vô định vô cực / vô cực hoặc 0.vô cực hoặc vô cực – vô cực. Dạng 4. Giới hạn một bên. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tài liệu chủ đề giới hạn dãy số
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề giới hạn dãy số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1. Dãy số có giới hạn hữu hạn. a. Giới hạn hữu hạn. b. Giới hạn đặc biệt. c. Định lí về giới hạn. d. Tổng của cấp số nhân lùi vô hạn. 2. Dãy số có giới hạn vô cực. a. Định nghĩa. b. Định lí. c. Một vài qui tắc tìm giới hạn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Dãy số có giới hạn 0. + Dạng 2. Khử dạng vô định vô cực / vô cực. + Dạng 3. Khử dạng vô định vô cực – vô cực. + Dạng 4. Tổng của cấp số nhân lùi vô hạn. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Bài giảng giới hạn của hàm số
Tài liệu gồm 55 trang, tóm tắt lý thuyết SGK, hướng dẫn giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề giới hạn của hàm số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. A. LÝ THUYẾT 1. Định nghĩa giới hạn của hàm số tại một điểm. 2. Định nghĩa giới hạn của hàm số tại vô cực. 3. Một số giới hạn đặc biệt. 4. Định lí về giới hạn hữu hạn. 5. Quy tắc về giới hạn vô cực. 6. Các dạng vô định. B. CÁC DẠNG TOÁN VỀ GIỚI HẠN HÀM SỐ Dạng 1. Tìm giới hạn xác định bằng cách sử dụng trực tiếp các định nghĩa, định lí và quy tắc. Dạng 2. Tìm giới hạn vô định. C. BÀI TẬP RÈN LUYỆN KỸ NĂNG Dạng 1. Bài tập tính giới hạn bằng cách sủ dụng định nghĩa, định lí và các quy tắc. Dạng 2. Giới hạn vô định dạng 0/0. Dạng 3. Giới hạn vô định dạng vô cực / vô cực. Dạng 4. Giới hạn vô định dạng 0 . Vô cực. Dạng 5. Dạng vô định vô cực – vô cực. D. HƯỚNG DẪN GIẢI CHI TIẾT Dạng 1. Bài tập tính giới hạn bằng cách sủ dụng định nghĩa, định lí và các quy tắc. Dạng 2. Giới hạn vô định dạng 0/0. Dạng 3. Giới hạn vô định dạng vô cực / vô cực. Dạng 4. Giới hạn vô định dạng 0 . Vô cực. Dạng 5. Dạng vô định vô cực – vô cực.
Bài giảng giới hạn của dãy số
Tài liệu gồm 36 trang, tóm tắt lý thuyết SGK, hướng dẫn giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề giới hạn của dãy số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. A. LÝ THUYẾT I. DÃY SỐ CÓ GIỚI HẠN 0. 1. Định nghĩa. 2. Một số dãy số có giới hạn 0. II. DÃY SỐ CÓ GIỚI HẠN HỮU HẠN. 1. Định nghĩa. 2. Một số định lí. 3. Tổng của cấp số nhân lùi vô hạn. III. DÃY SỐ CÓ GIỚI HẠN VÔ CỰC. 1. Dãy số có giới hạn dương vô cực. 2. Dãy số có giới hạn âm vô cực. 3. Một vài quy tắc tìm giới hạn vô cực. B. CÁC DẠNG TOÁN VỀ GIỚI HẠN DÃY SỐ Dạng 1. Tính giới hạn dãy số cho bởi công thức. Dạng 2. Tính giới hạn của dãy số cho bởi hệ thức truy hồi. Dạng 3. Tổng của cấp số nhân lùi vô hạn. Dạng 4. Tìm giới hạn của dãy số mà tổng là n số hạng đầu tiên của một dãy số khác. C. BÀI TẬP RÈN LUYỆN KỸ NĂNG Dạng 1. Bài tập lý thuyết. Dạng 2. Bài tập tính giới hạn dãy số cho bởi công thức. Dạng 3. Tổng của cấp số nhân lùi vô hạn. Dạng 4. Tìm giới hạn của dãy số cho bởi hệ thức truy hồi. Dạng 5. Tìm giới hạn của dãy số có chứa tham số. Dạng 6. Tìm giới hạn của dãy số mà số hạng tổng quát là tổng của n số hạng đầu tiên của một dãy số khác. D. HƯỚNG DẪN GIẢI CHI TIẾT Dạng 1. Bài tập lý thuyết. Dạng 2. Bài tập tính giới hạn dãy số cho bởi công thức. Dạng 3. Tổng của cấp số nhân lùi vô hạn. Dạng 4. Tìm giới hạn của dãy số cho bởi hệ thức truy hồi. Dạng 5. Tìm giới hạn của dãy số có chứa tham số. Dạng 6. Tìm giới hạn của dãy số mà số hạng tổng quát là tổng của n số hạng đầu tiên của một dãy số khác.