Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 11 năm 2023 - 2024 trường THPT Lê Quý Đôn - Thái Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Lê Quý Đôn, tỉnh Thái Bình. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Học sinh chọn 1 trong 4 phương án A B C D; Học sinh chỉ chọn ĐÚNG hoặc SAI; Tự luận. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 11 năm 2023 – 2024 trường THPT Lê Quý Đôn – Thái Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB CD AB CD 6a 3 tam giác SAB là tam giác đều. Gọi M là trung điểm của cạnh AD. Đúng Sai 1. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng đi qua S và song song với AB. 2. Giao điểm của đường thẳng AD và mặt phẳng (SBC) nằm trong mặt phẳng (SCD). 3. CD // SB. 4. Mặt phẳng α đi qua M song song với mặt phẳng (SAB) cắt các mặt của hình chóp (nếu có) theo các đoạn giao tuyến tạo thành một đa giác có diện tích bằng 2 5 3. + Ba bạn An, Bình, Chiến mỗi người chọn ngẫu nhiên một số tự nhiên thuộc đoạn [1;2023]. Tính xác xuất để ba số được chọn có tổng chia hết cho 3. Làm tròn kết quả đến chữ số thập phân thứ 2. + Trong mặt phẳng Oxy cho tam giác ABC có A(1;3), B(2;1), C(5;4). Đường thẳng ∆ đi qua đỉnh A và cắt cạnh BC tại D sao cho diện tích tam giác ADC bằng 2 lần diện tích tam giác ADB. Tính tổng khoảng cách từ B và C đến đường thẳng ∆.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic 27 tháng 4 Toán 11 năm 2020 - 2021 sở GDĐT Bà Rịa - Vũng Tàu
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề HSG cấp trường Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2020 – 2021. Đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là, hai đỉnh B, D lần lượt thuộc các đường thẳng. Biết rằng diện tích hình thoi bằng 75, đỉnh A có hoành độ âm. Tìm toạ độ các đỉnh hình thoi. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD, AB. Mặt bên SAD là tam giác đều, M là một điểm di động trên AB, mặt phẳng (P) đi qua M và song song với SA, BC. a) Tìm thiết diện của hình chóp khi cắt bởi (P). Thiết diện là hình gì? b) Tính diện tích thiết diện theo a, b và x AM x b. Tìm x theo b để diện tích thiết diện lớn nhất. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác sao cho là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác A B C là tam giác trung bình của tam giác A B C n n n. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác A B C n n n. Tính tổng 1 2 n S S S S.
Đề chọn HSG Toán 11 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5.
Đề khảo sát học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Quế Võ 1 - Bắc Ninh
Đề khảo sát học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Nhà anh A muốn khoan một cái giếng sâu 20 mét dùng để lấy nước cho sinh hoạt gia đình. Có hai cơ sở khoan giếng tính chi phí như sau: Cơ sở I: Mét thứ nhất 200 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét tăng thêm 60 nghìn đồng so với giá của mỗi mét trước đó. Cơ sở II: Mét thứ nhất 10 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét gấp 2 lần so với giá của mỗi mét trước đó.Hỏi gia đình anh A để tiết kiệm tiền thì nên chọn cơ sở nào để thuê, biết rằng hai cơ sở trên có chất lượng khoan là như nhau. + Cho hình lăng trụ tứ giác ABCD.A1B1C1D1, mặt phẳng (a) thay đổi và song song với hai đáy của lăng trụ lần lượt cắt các đoạn thẳng AB1, BC1, CD1, DA1 tại M, N, P, Q. Hãy xác định vị trí của mặt phẳng (a) để tứ giác MNPQ có diện tích nhỏ nhất. + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn tâm O, chọn ngẫu nhiên 4 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tứ giác có đúng một cạnh là cạnh của đa giác.