Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Cầm Bá Thước - Thanh Hóa

Nằm trong kế hoạch ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, ngày … tháng … năm 2020, trường THPT Cầm Bá Thước, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ nhất. Đề khảo sát Toán 12 lần 1 năm học 2019 – 2020 trường THPT Cầm Bá Thước – Thanh Hóa gồm 04 mã đề: 221, 314, 486, 532, đề gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Cầm Bá Thước – Thanh Hóa : + Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC theo a. + Để trang trí sân khấu cho buổi mít tinh chào mừng ngày 20/11 tại trường THPT Cầm Bá Thước, tỉnh Thanh Hóa. Thầy Tuấn bí thư đoàn trường yêu cầu xếp 9 chậu hoa hồng gồm ba chậu hoa hồng màu vàng, bốn chậu hoa hồng màu đỏ và hai chậu hoa hồng màu trắng thành một hàng phía trước sân khấu. Hỏi học sinh có bao nhiêu cách xếp sao cho mỗi chậu hoa hồng màu trắng phải xếp cạnh hai chậu hoa hồng màu đỏ hai bên và không có hai chậu hoa hồng màu vàng nào được xếp cạnh nhau. [ads] + Cho khối hộp ABCD.A0B0C0D0 có M là trung điểm của A0B0. Mặt phẳng (ACM) chia khối hộp đã cho thành hai phần. Gọi V1 là thể tích khối đa diện chứa đỉnh B0 và V2 là thể tích phần còn lại. Tỉ số V1/V2 bằng? + Bác An gửi vào một ngân hàng số tiền 5 triệu đồng với lãi suất 0,7%/tháng. Sau sáu tháng gửi tiền, lãi suất tăng lên 0,9%/tháng. Đến tháng thứ 10 sau khi gửi tiền, lãi suất giảm xuống 0,6%/tháng và giữ ổn định. Biết rằng nếu bác An không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Hỏi sau một năm gửi tiền, bác An rút được số tiền gần nhất với số nào sau đây? + Trong không gian cho tam giác OAB vuông tại O có OA = 4a, OB = 3a. Nếu cho tam giác OAB quay quanh cạnh OA thì mặt nón tạo thành có diện tích xung quanh Sxq bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?
Đề khảo sát chất lượng lớp 12 môn Toán (đợt 2) năm 2021 2022 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán (đợt 2) năm 2021 2022 sở GD ĐT Thanh Hóa Bản PDF Nhằm giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2022, sáng thứ Ba ngày 26 tháng 04 năm 2022, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2021 – 2022 lần thứ hai. Đề khảo sát chất lượng Toán lớp 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề khảo sát chất lượng Toán lớp 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trên tập hợp các số phức, xét phương trình z2 – 2z – m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2/2 với C(-1;1). Tổng các phần tử trong T bằng? + Cho hình trụ có O và O’ là tâm của hai đáy. Xét hình chữ nhật ABCD có A và B cùng thuộc đường tròn (O) và C và D cùng thuộc đường tròn (O’) sao cho AB = 3/3, BC = 6; đồng thời mặt phẳng (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Trong không gian Oxyz, cho mặt phẳng (P): x + y – 2z + 10 = 0 và hai điểm A(1;-1;2), B(2;0;-4). Gọi M(a;b;c) là điểm thuộc đoạn thẳng AB sao cho luôn tồn tại hai mặt cầu có bán kính R = 6 tiếp xúc với mặt phẳng (P), đồng thời tiếp xúc với đoạn thẳng AB tại M. Gọi T = [m;n) là tập giá trị của biểu thức 25a2 + b2 + 2c2. Tổng m + n bằng?
Đề khảo sát chất lượng lần 2 lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Dương
Nội dung Đề khảo sát chất lượng lần 2 lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 2 môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Hải Dương; kỳ thi được diễn ra vào lúc 19h15 ngày 18 tháng 04 năm 2022 theo hình thức thi trực tuyến (thi online trên máy tính / điện thoại). Trích dẫn đề khảo sát chất lượng lần 2 Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Dương : + Cho đồ thị hai hàm số y = f(x) và y = g(x) như hình vẽ bên dưới. Biết đồ thị của hàm số y = f(x) là một Parabol đỉnh I có tung độ bằng -1/2 và y = g(x) là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là x1, x2, x3 thỏa mãn x1.x2.x3 = -6. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) gần nhất với giá trị nào dưới đây? + Từ một miếng tôn hình tròn bán kính 2m, người ta cắt ra một hình chữ nhật rồi uốn thành mặt xung quanh của một chiếc thùng phi hình trụ như hình vẽ bên dưới. Để thể tích thùng lớn nhất thì diện tích phần tôn bị cắt bỏ gần nhất với giá trị nào sau đây? + Cho lăng trụ ABC.A’B’C’ có thể tích là V. M N P là các điểm lần lượt nằm trên các cạnh AM 1 BN AA’ 3′ BB’ СР AA’ BB’ CC’ sao cho x y. Biết thể tích khối đa diện ABC.MNP CC 2V bằng? Giá trị lớn nhất của x.y bằng?