Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023 2024 phòng GD ĐT Tứ Kỳ Hải Dương

Nội dung Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023 2024 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023-2024 phòng GD ĐT Tứ Kỳ Hải Dương Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023-2024 phòng GD ĐT Tứ Kỳ Hải Dương Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 tại phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn từ Đề học sinh giỏi Toán lớp 9 vòng 1 năm 2023-2024 phòng GD&ĐT Tứ Kỳ - Hải Dương: Cho các số thực a, b không âm thỏa mãn điều kiện 2a + 2b + ab = 4. Hãy tính giá trị của biểu thức P. Cho a, b, c là các số nguyên thỏa mãn a + b + c = c3 - 7c. Chứng minh rằng: a3 + b3 + c3 chia hết cho 6. Cho tam giác ABC vuông tại A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Cần chứng minh các phát biểu sau: a) AE.EB + AF.FC = AH2 và BC.cos³B = BE. b) BE.CH + CF.BH = AH.BC. c) Gọi M là trung điểm của BC, từ A kẻ đường thẳng d vuông góc với AM tại A. Từ B kẻ tia Bx vuông góc với BC cắt d tại P. Chứng minh PC đi qua trung điểm của AH. Đây là một bài thi đầy thách thức, đòi hỏi sự sáng tạo, logic và kiến thức vững chắc từ các em học sinh lớp 9. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức Toán của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT huyện Ba Vì - Hà Nội
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT huyện Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 24 tháng 09 năm 2021.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Lào Cai; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Lào Cai : + Cho phương trình 2 x m x m 2 1 2 5 0 (x là ẩn và m là tham số). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 x x 2 2. + Lúc 7 giờ sáng một người đi xe đạp từ địa điểm A đến địa điểm B với khoảng cách là 18 km. Sau khi đi được 1 3 quãng đường do xe bị hỏng nên người đó phải dừng lại sửa mất 20 phút rồi đi tiếp trên đoạn đường còn lại với vận tốc kém vận tốc lúc đầu là 8 km/h. Khi đến B người đó nghỉ lại 30 phút rồi trở về A với vận tốc bằng một nửa vận tốc đi trên 1 3 quãng đường AB đầu tiên. Biết người đó trở về A lúc 10 giờ 20 phút sáng cùng ngày. Hỏi xe đạp hỏng lúc mấy giờ? + Cho tam giác ABC nhọn có AB AC. Gọi D là trung điểm của BC. Hai đường cao BE và CF cắt nhau tại H. Đường tròn tâm O ngoại tiếp BDF và đường tròn tâm O ngoại tiếp CDE cắt nhau tại I (I khác D), EF cắt BC tại K. Chứng minh: a) Tứ giác AEIF nội tiếp. b) Tam giác DCA đồng dạng với tam giác DIC. c) Ba đường thẳng BE CF KI đồng quy.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho tam giác ABC AB BC CA ngoại tiếp đường tròn tâm I. Lấy E và F lần lượt trên các đường thẳng AC và AB sao cho CB CE BF đồng thời chúng nằm về cùng phía với A so với đường thẳng BC. Các đường thẳng BE và CF cắt nhau tại G. a) Chứng minh rằng bốn điểm C, E, I và G cùng nằm trên một đường tròn. b) Trên đường thẳng qua G và song song với AC lấy điểm H sao cho HG AF đồng thời H nằm khác phía với C so với đường thẳng BG. Chứng minh rằng 1 2 EHG CAB. + Cho đường tròn (O;R) và hai điểm A, B cố định nằm ngoài đường tròn sao cho OA R 2. Điểm C nằm trên đoạn thẳng AO sao cho 2 R OC và điểm M thay đổi trên đường tròn. Giá trị nhỏ nhất của MA + 2MB bằng? + Cho đường tròn tâm O có bán kính OA R, dây cung BC vuông góc với OA tại trung điểm M của đoạn thẳng OA, kẻ tiếp tuyến với đường tròn tại B, tiếp tuyến đó cắt OA tại E. Độ dài đoạn thẳng BE là?
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Ninh. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và nằm trong đường tròn có bán kính nhỏ hơn 3/5. + Cho tam giác ABC vuông tại A AB AC ngoại tiếp đường tròn tâm O. Gọi DEF lần lượt là tiếp điểm của (O) với các cạnh AB AC BC. Đường thẳng BO cắt các đường thẳng EF DF lần lượt tại I K. 1. Tính số đo góc BIF. 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A O H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. + Cho phương trình: 2 2 x mx m m 2 6 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm 1 x và 2 x sao cho 1 2 x x 8.