Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chuyên đề Toán 11 lần 1 năm 2019 2020 trường Quang Hà Vĩnh Phúc

Ngày … tháng 11 năm 2019, trường THPT Quang Hà – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 11 lần thứ nhất năm học 2019 – 2020, nhằm khảo sát chất lượng Toán 11 giai đoạn giữa học kỳ 1. Đề kiểm tra chuyên đề Toán 11 lần 1 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc gồm có 02 mã đề: đề số 01 và đề số 02, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra chuyên đề Toán 11 lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;3), B(2;-1), đường thẳng d có phương trình: 2x – 3y + 5 = 0 và vectơ v = (1;−3). a) Tìm tọa độ điểm A’ là ảnh của A qua phép tịnh tiến theo vectơ v. b) Viết phương trình ∆ là ảnh của d qua phép tịnh tiến theo vectơ v. c) Viết phương trình đường tròn (C) có tâm A và đi qua B. Viết phương trình đường tròn (C’) là ảnh của (C) qua phép quay tâm O(0;0) góc quay 90 độ. [ads] + Xác định m để phương trình cos4x = (cos3x)^2 + m(sinx)^2 có nghiệm thuộc (0;pi/12). + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;2), B(1;4), C(1;1). Gọi M, N, P lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. Giả sử M’, N’, P’ lần lượt là ảnh của M, N, P qua phép tịnh tiến theo vectơ AB. Tìm tọa độ tâm đường tròn nội tiếp tam giác M’N’P’.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL giữa học kỳ 1 năm học 2017 - 2018 môn Toán 11 trường THPT Nam Trực - Nam Định
Đề KSCL giữa học kỳ 1 năm học 2017 – 2018 môn Toán 11 trường THPT Nam Trực – Nam Định gồm 4 mã đề, mỗi mã đề gồm 12 câu trắc nghiệm và 4 câu tự luận, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng d có phương trình x + 2y + 3 = 0. Viết phương trình đường thẳng d’ là ảnh của d qua phép đồng dạng có được từ việc thực hiện liên tiếp phép quay tâm O góc quay -90 độ và phép vị tự tâm O tỉ số 5. A. d’: x + 2y – 30 = 0 B. d’: 2x – y + 3/5 = 0 C. d’: 2x – y + 15 =0 D. d’: 2x – y – 15 = 0 [ads] + Trong mặt phẳng tọa độ Oxy. Cho điểm A(1; 2) và đường tròn (C) có tâm I(1; -2), bán kính R = 3 và đường tròn (C’): x^2 + y^2 – 2x – 4 = 0. 1. Tìm ảnh của điểm A qua vị tự tâm O tỉ số k = 3 2. Tìm ảnh của đường tròn (C) qua vị tự tâm O tỉ số k = 3 3. Tìm các điểm M ∈ (C); N ∈ (C’) sao cho vtMN = vtIA + Cho ΔABC có A(1; 4), B(4; 0), C(-2; -2). Phép tịnh tiến TvtBC biến ΔABC thành ΔA’B’C’. Tọa độ trực tâm của ΔA’B’C’ là: A. (-1; 4) B. (4; 1) C. (4; -1) D. (-4; -1)
Đề KSCL giữa HK1 Toán 11 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TT. Huế
Đề KSCL giữa HK1 Toán 11 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (chiếm 2 điểm), yêu cầu học sinh hoàn thành đề thi trong thời gian 45 phút, đây là kỳ thi được tổ chức định kỳ ở các trường nhằm kiểm tra chất lượng học sinh sau từng giai đoạn của năm học, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán 11 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Cho điểm I thuộc đoạn thẳng AB và AB = 4AI. Chọn mệnh đề đúng? A. Phép vị tự tâm I tỉ số k = 3 biến điểm A thành điểm B. B. Phép vị tự tâm I tỉ số k = – 4 biến điểm A thành điểm B. C. Phép vị tự tâm I tỉ số k = – 3 biến điểm A thành điểm B. D. Phép vị tự tâm I tỉ số k = 4 biến điểm A thành điểm B. [ads] + Cho tam giác ABC vuông tại A và có góc B bằng 60 độ. Phép quay tâm B góc quay α = (BA;BC) biến điểm A thành điểm H. Khẳng định nào sau đây sai? A. Ba điểm B, H, C thẳng hàng. B. Tam giác ABH là tam giác đều. C. Tam giác AHC vuông tại H. D. AB = BC – HC. + Trong mặt phẳng toạ độ Oxy, cho đường thẳng ∆: 5x – 2y – 8 = 0. Viết phương trình đường thẳng ∆1 là ảnh của đường thẳng ∆ qua phép tịnh tiến theo vectơ v = (-1;3).
Đề KSCL 8 tuần HK1 Toán 11 năm 2023 - 2024 THPT chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng 8 tuần học kì 1 môn Toán 11 ABD năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định (mã đề 638). Trích dẫn Đề KSCL 8 tuần HK1 Toán 11 năm 2023 – 2024 THPT chuyên Lê Hồng Phong – Nam Định : + Bạn Nam viết lên bảng 30 số nguyên liên tiếp. Sau đó bạn xóa đi một số, tổng 29 số còn lại là 2023. Số bạn Nam xóa đi là? + Dân số Nam Định năm 2022 là 1 876 854 người. Theo thống kê trung bình mỗi năm dân số Nam Định tăng khoảng 2,2% so với năm trước. Dự kiến dân số Nam Định năm 2032 là? + Chiều cao (đơn vị: centimét) của một đứa trẻ n tuổi (n thuộc N*) phát triển bình thường được cho bởi công thức: xn = 75 + 5(n − 1). Một đứa trẻ phát triển bình thường có chiều cao năm 4 tuổi là?