Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn

Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu này gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết: 1. Khái niệm phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn \(ax + by = c\) là phương trình có dạng \(ax + by = c\) (trong đó \(a\), \(b\), \(c\) là các số cho trước và \(a \neq 0\) hoặc \(b \neq 0\). Nếu điểm \(M(x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì \(M(x, y) (0, 0)\) là một nghiệm của phương trình. Trong mặt phẳng tọa độ \(Oxy\), mỗi nghiệm \(x, y (0, 0)\) của phương trình \(ax + by = c\) được biểu diễn bởi một điểm có tọa độ \((x, y) (0, 0)\) trong đó \(x\) là hoành độ và \(y\) là tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình \(ax + by = c\) luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng \(d: ax + by = c\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = b - \frac{c}{a}x\) hoặc \(y = \frac{c}{b}\) khi đó đường thẳng \(d\) cắt cả hai trục tọa độ. Đường thẳng \(d\) là đồ thị hàm số: \(y = \frac{-ax + c}{b}\). B. Bài tập và các dạng toán: Dạng 1: Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực \( (x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì nó được gọi là nghiệm của phương trình \(ax + by = c\). Dạng 2: Tìm điều kiện của tham số để đường thẳng \(ax + by = c\) thỏa mãn điều kiện cho trước. Cách giải: Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Dạng 3: Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình \(ax + by = c\), ta làm như sau: Bước 1: Tìm một nghiệm nguyên \( (x, y) (0, 0)\) của phương trình. Bước 2: Đưa phương trình về dạng \(ax - x + by - y = 0\) từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM BÀI TẬP VỀ NHÀ File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ I. Định lí Trong một tam giác vuông, mỗi cạnh góc vuông bằng: + Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. + Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề. Trong hình bên thì: $b = a\sin B = a\cos C$; $c = a\sin C = a\cos B$; $b = c\tan B = c\cot C$; $c = b\tan C = b\cot B.$ II. Giải tam giác vuông Là tìm tất cả các cạnh và góc của tam giác vuông B khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). B. MỘT SỐ DẠNG BÀI CƠ BẢN VÀ NÂNG CAO C. BÀI TẬP TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO Dạng 1 : Các bài toán tính toán. 1. Phương pháp giải. + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. 2. Bài tập minh họa. Dạng 2 : Chứng minh đẳng thức, mệnh đề. 1. Phương pháp giải. Đưa mệnh đề về dạng đẳng thức, sử dụng hệ thức lượng và một số kiến thức đã học biến đổi các vế trong biểu thức, từ đó chứng minh các vế bằng nhau. 2. Bài tập minh họa. C. TRẮC NGHỆM RÈN LUYỆN PHẢN XẠ D. HƯỚNG DẪN GIẢI
Chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 29 trang, tóm tắt lý thuyết, phân dạng và tuyển chọn các bài tập chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông, hỗ trợ học sinh trong quá trình học chương trình Hình học 9 chương 1 bài số 1. A. LÝ THUYẾT B. DẠNG BÀI MINH HỌA I. Bài toán và các dạng bài và phương pháp. Dạng 1 : Chứng minh hệ thức. Phương pháp giải: Sử dụng định lý Ta-lét và hệ thức lượng đã học biến đổi các vế, đưa về dạng đơn giản để chứng minh. Dạng 2 : Tìm độ dài đoạn thẳng, số đo góc. Phương pháp giải: + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. Dạng 3 . Bài toán thực tế liên quan. III. Trắc nghiệm rèn phản xạ. III. Phiếu bài tự luyện. IV. Hướng dẫn giải.
Chuyên đề giải bài toán bằng cách lập phương trình
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải bài toán bằng cách lập phương trình, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 8. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Các bước giải bài toán bằng cách lập phương trình: Bước 1. Lập phương trình: + Chọn ẩn số và đặt điều kiện cho ẩn số. + Biểu diễn các dữ kiện chưa biết qua ẩn số. + Lập phương trình biểu thị tương quan giữa ẩn số và các dữ kiện đã biết. Bước 2. Giải phương trình. Bước 3. Đối chiếu nghiệm của phương trình với điều kiện của ẩn số (nếu có) và với đề bài để đưa ra kết luận. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Bài toán về năng suất lao động. Năng suất được tính bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành. Dạng 2 . Toán về công việc làm chung, làm riêng. Thường coi khối lượng công việc là 1 đơn vị. Năng suất 1 + Năng suất 2 = Tổng năng suất. Dạng 3 . Toán về quan hệ các số. Dạng 4 . Toán có nội dung hình học. Dạng 5 . Toán chuyển động. Quãng đường = Vận tốc x Thời gian. Dạng 6 . Toán về chuyển động trên dòng nước. Vận tốc tàu khi xuôi dòng = Vận tốc của tàu khi nước yên lặng + Vận tốc dòng nước. Vận tốc tàu khi ngược dòng = Vận tốc của tàu khi nước yên lặng – Vận tốc dòng nước. Dạng 7 . Các dạng khác. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO – PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN