Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Hải Dương

Nội dung Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Hải Dương Bản PDF Thứ Tư ngày 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Hải Dương gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Kết thúc đợt Hội học chào mừng ngày Nhà giáo Việt Nam, lớp 12A có 10 bạn được trao thưởng trong đó có An và Bình. Phần thưởng để trao cho 10 bạn gồm 5 quyển sách Hóa, 7 quyển sách Toán, 8 quyển sách Tiếng Anh (trong đó các quyển sách cùng môn là giống nhau). Mỗi bạn sẽ được nhận 2 quyển sách khác loại. Tìm xác suất để An và Bình có phần thưởng giống nhau. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có B(-1;4). Gọi D, E(-1;2) lần lượt là chân đường cao kẻ từ A, B và M là trung điểm của đoạn thẳng AB. Biết I(-3/2;7/2) là tâm đường tròn ngoại tiếp tam giác DEM. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 120°. a) Tính thể tích khối chóp S.ABCD biết SA = SB = SC và khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 3a/4. b) Tính thể tích khối chóp S.ABC biết góc giữa hai mặt phẳng (ABC), (SBC) bằng 45° và tam giác SAB vuông cân tại A.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Cho tam giác ABC nội tiếp đường tròn (O) với AB AC. Trung tuyến xuất phát từ đỉnh A và đường phân giác trong của góc A cắt BC lần lượt tại M và N. Đường thẳng qua N và vuông góc với AN cắt đường thẳng AB, AM lần lượt tại P và Q; đường thẳng qua P và vuông góc với AB cắt đường thẳng AN tại R. Chứng minh QR vuông góc với BC. + Tìm hiểu kết quả học tập ở một lớp học người ta thấy: Hơn 7 10 số học sinh đạt điểm giỏi ở môn Toán cũng đồng thời đạt điểm giỏi ở môn Ngữ văn. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Ngữ văn cũng đồng thời đạt điểm giỏi ở môn Lịch sử. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Lịch sử cũng đồng thời đạt điểm giỏi ở môn Tiếng Anh. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Tiếng Anh cũng đồng thời đạt điểm giỏi ở môn Toán. Chứng minh trong lớp có ít nhất một học sinh đạt điểm giỏi ở cả bốn môn Toán, Ngữ văn, Lịch sử, Tiếng Anh. + Cho hàm số 3 2 f x m x m x x 1 1 3 6 5 và 2 0 max 1 f x f với m là tham số thực. Tìm giá trị nhỏ nhất của hàm số f x trên đoạn −2 0.
Đề chọn đội tuyển HSG môn Toán năm 2022 2023 sở GD ĐT Đắk Nông
Nội dung Đề chọn đội tuyển HSG môn Toán năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Cho phương trình ax3 + 27×2 + 12x + 2022 = 0 có 3 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực: 4 (ax3 + 27×2 + 12x + 2022)(3ax + 27) = (3ax2 + 54x + 12)2 với a khác 0. + Cho hai đường tròn (O1) và (O2) tiếp xúc trong tại M (đường tròn (O2) nằm trong). Hai điểm P và Q thuộc đường tròn (O2), qua P kẻ tiếp tuyến với (O2) cắt (O1) tại B và D, qua Q kẻ tiếp tuyến với (O2) cắt (O1) tại A và C. Chứng minh rằng tâm đường tròn nội tiếp các tam giác ACD, BCD nằm trên PQ. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định. Đường thẳng d đi qua I lần lượt cắt cạnh AB, AC tại M, N. Tìm vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề học sinh giỏi tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Nam (đợt 1)
Nội dung Đề học sinh giỏi tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Nam (đợt 1) Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam (đợt 1); kỳ thi được diễn ra vào ngày 07 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Nam (đợt 1) : + Cho đường tròn (O) và hai điểm A, B cố định nằm trên đường tròn (O) sao cho ba điểm O, A, B không thẳng hàng. Xét một điểm C trên đường tròn (O) sao cho tam giác ABC không cân tại C. Gọi (O1) là đường tròn đi qua A và tiếp xúc với BC tại C; (O2) là đường tròn đi qua B và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai là D (D khác C). a) Tiếp tuyến của đường tròn (O) tại C cắt đường thẳng OD tại S. Chứng minh OA là tiếp tuyến của đường tròn ngoại tiếp tam giác ADS. b) Chứng minh đường thẳng CD luôn đi qua một điểm cố định khi điểm C di động trên đường tròn (O) (tam giác ABC không cân tại C). + Cho tập hợp X có 2023 phần tử. Hỏi có tất cả bao nhiêu cách chọn hai tập hợp con khác nhau của X sao cho giao của hai tập hợp này là một tập hợp có đúng một phần tử? + Tìm tất cả các cặp số nguyên tố p và q thỏa mãn 2^p + 2^q chia hết cho p.q.