Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hàm số bậc nhất

Nội dung Các dạng toán hàm số bậc nhất Bản PDF - Nội dung bài viết Các dạng toán hàm số bậc nhấtVấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm sốVấn đề 2: Hàm số bậc nhấtVấn đề 3: Đồ thị của hàm số bậc nhấtVấn đề 4: Vị trí tương đối giữa hai đường thẳngVấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Các dạng toán hàm số bậc nhất Trong tài liệu này, bạn sẽ được hướng dẫn chi tiết với 28 trang về cách phân loại và giải các dạng toán hàm số bậc nhất. Đây là một tài liệu hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 phần Đại số chương 2. Vấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm số Trước hết, tóm tắt lý thuyết để bạn hiểu rõ về khái niệm hàm số và đồ thị hàm số. Sau đó, bài tập và các dạng toán sẽ giúp bạn làm quen với các khái niệm này, bao gồm: Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Bài toán liên quan đến đồ thị hàm số y = ax (a ≠ 0). Sau khi làm xong bài tập, bạn cũng sẽ được giao bài tập về nhà để ôn tập kiến thức. Vấn đề 2: Hàm số bậc nhất Trong phần này, bạn sẽ được học về hàm số bậc nhất thông qua: Dạng 1: Nhận dạng hàm số bậc nhất. Dạng 2: Tìm m để hàm số đồng biến, nghịch biến. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để luyện tập thêm. Vấn đề 3: Đồ thị của hàm số bậc nhất Ở phần này, bạn sẽ tìm hiểu về đồ thị của hàm số y = ax + b (a ≠ 0), bao gồm: Dạng 1: Vẽ đồ thị hàm số y = ax + b và tìm tọa độ giao điểm của hai đường thẳng. Dạng 2: Xét tính đồng quy của ba đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để củng cố kiến thức. Vấn đề 4: Vị trí tương đối giữa hai đường thẳng Trong phần này, bạn sẽ được học về vị trí tương đối của hai đường thẳng, bao gồm: Dạng 1: Chỉ ra các cặp đường thẳng song song và cắt nhau. Dạng 2: Xác định phương trình đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để tự kiểm tra kiến thức đã học. Vấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Trong phần này, bạn sẽ học về hệ số góc của đường thẳng y = ax + b (a ≠ 0), bao gồm: Dạng 1: Xác định hệ số góc của đường thẳng. Dạng 2: Xác định phương trình đường thẳng dựa vào hệ số góc. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để rèn luyện kỹ năng giải bài toán.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Cho hình trụ có bán kính đáy R và chiều cao h. Khi đó: 1. Diện tích xung quanh: Sxq = 2piRh. 2. Diện tích đáy: S = piR^2. 3. Diện tích toàn phần: Stp = 2piRh + 2piR^2. 4. Thể tích: V = piR^2h. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Vận dụng các công thức trên để tính bán kính đáy, chiều cao, diện tích đáy, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng một cách linh hoạt kiến thức về hình học phẳng đã được học kết hợp các công thức và lí thuyết về hình trụ kết hợp giải bài tập. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề diện tích hình tròn, hình quạt tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề diện tích hình tròn, hình quạt tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức diện tích hình tròn: Diện tích S của một hình tròn bán kinh R được tính theo công thức: S = pi.R^2. 2. Công thức diện tích hình quạt tròn: Diện tích hình quạt tròn bán kính E, cung n0 được tính theo công thức: S = piR^2n/360 hay S = lR/2 (l là độ dài cung n0 của hình quạt tròn). II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Áp dụng các công thức trên và các kiến thức đã có. Dạng 2. Bài toán tổng hợp. Phương pháp giải: Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kính đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề độ dài đường tròn, cung tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề độ dài đường tròn, cung tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức tính độ dài đường tròn (chu vi đường tròn). Độ dài (C) của một đường tròn bán kính R được tính theo công thức: C = 2piR hoặc C = pid (với d = 2R). 2. Công thức tính độ dài cung tròn. Trên đường tròn bán kính R, độ dài l của một cung n° được tính theo công thức: l = piRn/180. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính độ dài đường tròn, cung tròn. Phương pháp giải: Áp dụng công thức đã nêu trong phần tóm tắt lý thuyết. Dạng 2. Một số bài toán tổng hợp. Phương pháp giải: Áp dụng công thức trên và các kiến thức đã có. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề tứ giác nội tiếp
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tứ giác nội tiếp, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 7. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Định nghĩa. 2. Định lí. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh tứ giác nội tiếp. Phương pháp giải: Để chứng minh tứ giác nội tiếp, ta có thể sử dụng một trong các cách sau: + Cách 1. Chứng minh tứ giác có tổng hai góc đối bằng 180°. + Cách 2. Chứng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α. + Cách 3. Chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. + Cách 4. Tìm được một điểm cách đều bốn đỉnh của tứ giác. Dạng 2. Sử dụng tứ giác nội tiếp để chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau, các đường thẳng song song hoặc đồng quy, các tam giác đồng dạng. Phương pháp: Sử dụng tính chất của tứ giác nội tiếp. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN NÂNG CAO