Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2024 môn Toán lần 2 liên trường THPT - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán lần 2 liên trường THPT, tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Bảy ngày 13 tháng 04 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán lần 2 liên trường THPT – Nghệ An : + Trong một đề thi trắc nghiệm môn Toán có loại câu hỏi trả lời dạng đúng sai. Một câu hỏi có 4 ý hỏi, mỗi ý hỏi học sinh chỉ cần trả lời đúng hoặc chỉ trả lời sai. Nếu 1 ý trả lời đúng đáp án thì được 0,1 điểm, đúng đáp án 2 ý được 0,25 điểm, đúng đáp án 3 ý được 0,5 điểm và đúng đáp án cả 4 ý được 1 điểm. Giả sử một thí sinh làm bài bằng cách chọn phương án ngẫu nhiên để trả lời cho 2 câu hỏi loại đúng sai này. Tính xác suất để học sinh đó được 1 điểm ở phần trả lời 2 câu hỏi này? + Cho hình thang ABCD vuông tại A và B có AB = 2, AD = 8 và BC = x với 0 8 x. Gọi V1 V2 lần lượt là thể tích các khối tròn xoay tạo thành khi quay hình thang ABCD (kể cả các điểm trong) quanh đường thẳng BC và AD. Tìm x để 1 2 3 2 V V. + Trên tập hợp số phức, xét phương trình 2 z mz 10 0 (với m là tham số). Biết phương trình đã cho có hai nghiệm phân biệt 1 2 z z. Các điểm biểu diễn các số phức 1 2 1 2 1 1 z z tạo thành một đa giác lồi có diện tích lớn nhất bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Đức Mậu - Nghệ An lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Đức Mậu – Nghệ An lần 2 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Cho mặt phẳng (P) chứa hình vuông ABCD. Trên đường thẳng vuông góc với mặt phẳng (P) tại A, lấy điểm M. Trên đường thẳng vuông góc với mặt phẳng P tại C lấy điểm N (N cùng phía với M so với mặt phẳng (P). Gọi I là trung điểm của MN. Thể tích của tứ diện MNBD luôn có thể tích được bằng công thức nào sau đây? 2. Trong không gian Oxyz, cho hai điểm A(2;3;1), B(1;4;1). Phương trình tổng quát của mặt phẳng qua A B, và song song trục Oz là? 3. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AD = a, AB = 2a, cạnh bên SA = 2a và vuông góc với mặt phẳng đáy (ABCD). Gọi M là trung điểm của cạnh BC. Tính bán kính hình cầu ngoại tiếp hình chóp S AMD.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT EaRôk - Đăk Lăk
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT EaRôk – Đăk Lăk gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Diện tích hình tròn lớn của một hình cầu là a. Một mặt phẳng (P) cắt một hình cầu theo một đường tròn có bán kính r, diện tích a/2. Biết bán kính hình cầu là R, chọn đáp án đúng? 2. Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a,Hình chiếu vuông góc của A’ xuống (ABC) là trung điểm của AB. Mặt bên (ACC’A’) tạo với đáy góc 45 độ. Thể tích khối lăng trụ ABC.A’B’C’? 3. Người ta cần xây một hồ chứa nước với dạng khối hộp chữ nhật không nắp có thể tích bằng 500/3 m3. Đáy hồ là hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê nhân công để xây hồ là 500.000 đồng/m2. Khi đó, kích thước của hồ nước sao cho chi phí thuê nhân công thấp nhất là?
Đề thi giữa học kỳ 2 năm 2017 môn Toán trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề thi giữa học kỳ 2 năm 2017 môn Toán trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Bắc Yên Thành - Nghệ An
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Bắc Yên Thành – Nghệ An gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: 1. Ông A gửi số tiền 100 triệu đồng vào ngân hàng với lãi suất 7% trên năm, biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Hỏi sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền mà ông A nhận được tính cả gốc lẫn lãi là? 2. Cho ba hình tam giác đều cạnh bằng a chồng lên nhau như hình vẽ (cạnh đáy của tam giác trên đi qua các trung điểm hai cạnh bên của tam gác dưới). Tính theo a thể tích của khối tròn xoay tạo thành khi quay chúng xung quanh đường thẳng (d)? 3. Cho một tấm nhôm hình chữ nhật ABCD có AD = 60cm, AB = 40cm. Ta gập tấm nhôm theo hai cạnh MN và PQ vào phía trong cho đến khi AB và DC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Khi đó có thể tạo được khối lăng trụ với thể tích lớn nhất bằng?